UKElectionNarratives: A Dataset of Misleading Narratives Surrounding Recent UK General Elections
- URL: http://arxiv.org/abs/2505.05459v1
- Date: Thu, 08 May 2025 17:51:20 GMT
- Title: UKElectionNarratives: A Dataset of Misleading Narratives Surrounding Recent UK General Elections
- Authors: Fatima Haouari, Carolina Scarton, Nicolò Faggiani, Nikolaos Nikolaidis, Bonka Kotseva, Ibrahim Abu Farha, Jens Linge, Kalina Bontcheva,
- Abstract summary: We introduce the first taxonomy of common misleading narratives that circulated during recent elections in Europe.<n>Based on this taxonomy, we construct and analyse UKElectionNarratives: the first dataset of human-annotated misleading narratives.
- Score: 4.790922259120059
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Misleading narratives play a crucial role in shaping public opinion during elections, as they can influence how voters perceive candidates and political parties. This entails the need to detect these narratives accurately. To address this, we introduce the first taxonomy of common misleading narratives that circulated during recent elections in Europe. Based on this taxonomy, we construct and analyse UKElectionNarratives: the first dataset of human-annotated misleading narratives which circulated during the UK General Elections in 2019 and 2024. We also benchmark Pre-trained and Large Language Models (focusing on GPT-4o), studying their effectiveness in detecting election-related misleading narratives. Finally, we discuss potential use cases and make recommendations for future research directions using the proposed codebook and dataset.
Related papers
- A Large-Scale Simulation on Large Language Models for Decision-Making in Political Science [18.521101885334673]
We develop a theory-driven, multi-step reasoning framework to simulate voter decision-making at scale.<n>We conduct large-scale simulations of recent U.S. presidential elections using synthetic personas calibrated to real-world voter data.
arXiv Detail & Related papers (2024-12-19T07:10:51Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
This study seeks to identify and quantify biases in simulating political samples with Large Language Models.
Using the GPT-3.5-Turbo model, we leverage data from the American National Election Studies, German Longitudinal Election Study, Zuobiao dataset, and China Family Panel Studies.
arXiv Detail & Related papers (2024-07-16T05:52:26Z) - Electoral Agitation Data Set: The Use Case of the Polish Election [3.671887117122512]
We present the first publicly open data set for detecting electoral agitation in the Polish language.
It contains 6,112 human-annotated tweets tagged with four legally conditioned categories.
The newly created data set was used to fine-tune a Polish Language Model called HerBERT.
arXiv Detail & Related papers (2023-07-13T18:14:43Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - Novelty in news search: a longitudinal study of the 2020 US elections [62.997667081978825]
We analyze novelty, a measurement of new items that emerge in the top news search results.
We find more new items emerging for election related queries compared to topical or stable queries.
We argue that such imbalances affect the visibility of political candidates in news searches during electoral periods.
arXiv Detail & Related papers (2022-11-09T08:42:37Z) - A Spanish dataset for Targeted Sentiment Analysis of political headlines [0.0]
This work addresses the task of Targeted Sentiment Analysis for the domain of news headlines, published by the main outlets during the 2019 Argentinean Presidential Elections.
We present a polarity dataset of 1,976 headlines mentioning candidates in the 2019 elections at the target level.
Preliminary experiments with state-of-the-art classification algorithms based on pre-trained linguistic models suggest that target information is helpful for this task.
arXiv Detail & Related papers (2022-08-30T01:30:30Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - Predicting the 2020 US Presidential Election with Twitter [0.0]
Electoral prediction utilizing social media data potentially would significantly affect campaign strategies.
This paper explores past successful methods from research for analysis and prediction of the 2020 US Presidential Election using Twitter data.
It is inconclusive whether this is an accurate method for predicting elections due to scarcity of data.
arXiv Detail & Related papers (2021-07-19T14:59:25Z) - Mundus vult decipi, ergo decipiatur: Visual Communication of Uncertainty
in Election Polls [56.8172499765118]
We discuss potential sources of bias in nowcasting and forecasting.
Concepts are presented to attenuate the issue of falsely perceived accuracy.
One key idea is the use of Probabilities of Events instead of party shares.
arXiv Detail & Related papers (2021-04-28T07:02:24Z) - Inferring Political Preferences from Twitter [0.0]
Political Sentiment Analysis of social media helps the political strategists to scrutinize the performance of a party or candidate.
During the time of elections, the social networks get flooded with blogs, chats, debates and discussions about the prospects of political parties and politicians.
In this work, we chose to identify the inclination of political opinions present in Tweets by modelling it as a text classification problem using classical machine learning.
arXiv Detail & Related papers (2020-07-21T05:20:43Z) - Electoral Forecasting Using a Novel Temporal Attenuation Model:
Predicting the US Presidential Elections [91.3755431537592]
We develop a novel macro-scale temporal attenuation (TA) model, which uses pre-election poll data to improve forecasting accuracy.
Our hypothesis is that the timing of publicizing opinion polls plays a significant role in how opinion oscillates, especially right before elections.
We present two different implementations of the TA model, which accumulate an average forecasting error of 2.8-3.28 points over the 48-year period.
arXiv Detail & Related papers (2020-04-30T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.