ECGDeDRDNet: A deep learning-based method for Electrocardiogram noise removal using a double recurrent dense network
- URL: http://arxiv.org/abs/2505.05477v1
- Date: Wed, 23 Apr 2025 03:22:46 GMT
- Title: ECGDeDRDNet: A deep learning-based method for Electrocardiogram noise removal using a double recurrent dense network
- Authors: Sainan xiao, Wangdong Yang, Buwen Cao, Jintao Wu,
- Abstract summary: ECG signals are frequently corrupted by noise, such as baseline wander (BW), muscle artifacts (MA), and electrode motion (EM)<n>We propose ECGDeDRDNet, a deep learning-based ECG Denoising framework leveraging a Double Recurrent Dense Network architecture.
- Score: 1.7799340858082906
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Electrocardiogram (ECG) signals are frequently corrupted by noise, such as baseline wander (BW), muscle artifacts (MA), and electrode motion (EM), which significantly degrade their diagnostic utility. To address this issue, we propose ECGDeDRDNet, a deep learning-based ECG Denoising framework leveraging a Double Recurrent Dense Network architecture. In contrast to traditional approaches, we introduce a double recurrent scheme to enhance information reuse from both ECG waveforms and the estimated clean image. For ECG waveform processing, our basic model employs LSTM layers cascaded with DenseNet blocks. The estimated clean ECG image, obtained by subtracting predicted noise components from the noisy input, is iteratively fed back into the model. This dual recurrent architecture enables comprehensive utilization of both temporal waveform features and spatial image details, leading to more effective noise suppression. Experimental results on the MIT-BIH dataset demonstrate that our method achieves superior performance compared to conventional image denoising methods in terms of PSNR and SSIM while also surpassing classical ECG denoising techniques in both SNR and RMSE.
Related papers
- Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model [105.95160543743984]
We propose a deep learning procedure called Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) for quantitative material decomposition.<n>We show that DEcomp-MoD outperform state-of-the-art unsupervised score-based model and supervised deep learning networks.
arXiv Detail & Related papers (2025-07-24T01:00:06Z) - MSECG: Incorporating Mamba for Robust and Efficient ECG Super-Resolution [27.433941157026737]
We propose MSECG, a compact neural network model designed for ECG SR.<n>MSECG combines the strength of the recurrent Mamba model with convolutional layers to capture both local and global dependencies in ECG waveforms.<n> Experimental results show that MSECG outperforms two contemporary ECG SR models under both clean and noisy conditions.
arXiv Detail & Related papers (2024-12-06T08:53:31Z) - MECG-E: Mamba-based ECG Enhancer for Baseline Wander Removal [23.040957989796155]
We propose a novel ECG denoising model, namely Mamba-based ECG Enhancer (MECG-E)
MECG-E surpasses several well-known existing models across multiple metrics under different noise conditions.
It requires less inference time than state-of-the-art diffusion-based ECG denoisers.
arXiv Detail & Related papers (2024-09-27T15:22:44Z) - NERULA: A Dual-Pathway Self-Supervised Learning Framework for Electrocardiogram Signal Analysis [5.8961928852930034]
We present NERULA, a self-supervised framework designed for single-lead ECG signals.
NERULA's dual-pathway architecture combines ECG reconstruction and non-contrastive learning to extract detailed cardiac features.
We show that combining generative and discriminative paths into the training spectrum leads to better results by outperforming state-of-the-art self-supervised learning benchmarks in various tasks.
arXiv Detail & Related papers (2024-05-21T14:01:57Z) - Bayesian ECG reconstruction using denoising diffusion generative models [11.603515105957461]
We propose a denoising diffusion generative model (DDGM) trained with healthy electrocardiogram (ECG) data.
Our results show that this innovative generative model can successfully generate realistic ECG signals.
arXiv Detail & Related papers (2023-12-18T15:56:21Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and
Noise Removal [4.998493052085877]
Electrocardiogram (ECG) signals commonly suffer noise interference, such as baseline wander.
This paper proposes a novel ECG baseline wander and noise removal technology.
arXiv Detail & Related papers (2022-07-31T23:39:33Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.