論文の概要: FedAvgen: Metadata for Model Aggregation In Communication Systems
- arxiv url: http://arxiv.org/abs/2505.05486v1
- Date: Mon, 28 Apr 2025 13:11:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-18 22:55:23.150569
- Title: FedAvgen: Metadata for Model Aggregation In Communication Systems
- Title(参考訳): FedAvgen: 通信システムにおけるモデル集約のためのメタデータ
- Authors: Anthony Kiggundu, Dennis Krummacker, Hans D. Schotten,
- Abstract要約: デバイスプロファイルにおける存在多様性から生じる課題について検討する。
このアプローチは、フェデレートラーニング(federated learning)として知られ、本質的には、グローバルモデルを得るために平均された候補クライアントモデルを選択するために、異なるテクニックを使用している。
次に,FedAvg(Federated Averaging)とFedSGD(Federated Gradient Descent)という2つの広く採用されているフェデレーション学習アルゴリズムと比較した。
- 参考スコア(独自算出の注目度): 3.6957462300442736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To improve business efficiency and minimize costs, Artificial Intelligence (AI) practitioners have adopted a shift from formulating models from scratch towards sharing pretrained models. The pretrained models are then aggregated into a global model with higher generalization capabilities, which is afterwards distributed to the client devices. This approach is known as federated learning and inherently utilizes different techniques to select the candidate client models averaged to obtain the global model. This approach, in the case of communication systems, faces challenges arising from the existential diversity in device profiles. The multiplicity in profiles motivates our conceptual assessment of a metaheuristic algorithm (FedAvgen), which relates each pretrained model with its weight space as metadata, to a phenotype and genotype, respectively. This parent-child genetic evolution characterizes the global averaging step in federated learning. We then compare the results of our approach to two widely adopted baseline federated learning algorithms like Federated Averaging (FedAvg) and Federated Stochastic Gradient Descent (FedSGD).
- Abstract(参考訳): ビジネス効率の向上とコストの最小化のために、人工知能(AI)実践者は、スクラッチから事前訓練されたモデルの共有へのシフトを採用した。
事前訓練されたモデルは、より高い一般化能力を持つグローバルモデルに集約され、その後、クライアントデバイスに分散される。
このアプローチは、フェデレートラーニング(federated learning)として知られ、本質的には、グローバルモデルを得るために平均された候補クライアントモデルを選択するために、異なるテクニックを使用している。
このアプローチは、通信システムの場合、デバイスプロファイルの存在する多様性から生じる課題に直面する。
プロファイルの多重性はメタヒューリスティックアルゴリズム(FedAvgen)の概念的評価を動機付け、各事前学習されたモデルとその重み空間をメタデータとして関連付け、表現型とジェノタイプをそれぞれ関連付ける。
この親子遺伝進化は、連合学習における世界平均化ステップを特徴づける。
次に,FedAvg(Federated Averaging)やFedSGD(Federated Stochastic Gradient Descent)といった,広く採用されている2つのベースライン・フェデレーション学習アルゴリズムと比較した。
関連論文リスト
- Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - FedDRL: A Trustworthy Federated Learning Model Fusion Method Based on Staged Reinforcement Learning [7.846139591790014]
2段階のアプローチに基づく強化学習を用いたモデル融合手法であるFedDRLを提案する。
最初の段階では、我々の手法は悪意あるモデルをフィルタリングし、信頼されたクライアントモデルを選択してモデル融合に参加する。
第2段階では、FedDRLアルゴリズムは信頼されたクライアントモデルの重みを適応的に調整し、最適なグローバルモデルを集約する。
論文 参考訳(メタデータ) (2023-07-25T17:24:32Z) - Federated Variational Inference: Towards Improved Personalization and
Generalization [2.37589914835055]
我々は、ステートレスなクロスデバイス・フェデレーション学習環境におけるパーソナライズと一般化について研究する。
まず階層的生成モデルを提案し,ベイズ推論を用いて定式化する。
次に、変分推論を用いてこの過程を近似し、モデルを効率的に訓練する。
我々は,FEMNISTとCIFAR-100画像分類のモデルを評価し,FedVIが両タスクの最先端性に勝っていることを示す。
論文 参考訳(メタデータ) (2023-05-23T04:28:07Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。