論文の概要: GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation
- arxiv url: http://arxiv.org/abs/2505.05520v1
- Date: Thu, 08 May 2025 04:25:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.013942
- Title: GaMNet: A Hybrid Network with Gabor Fusion and NMamba for Efficient 3D Glioma Segmentation
- Title(参考訳): GaMNet: 効率的な3次元グリオーマセグメンテーションのためのGabor FusionとNMambaを用いたハイブリッドネットワーク
- Authors: Chengwei Ye, Huanzhen Zhang, Yufei Lin, Kangsheng Wang, Linuo Xu, Shuyan Liu,
- Abstract要約: 深層学習は病変のセグメンテーションに役立つが、CNNとTransformerベースのモデルは文脈モデリングを欠いていることが多く、重い計算を必要とする。
グローバルモデリングのためのNMambaモジュールと,効率的な局所特徴抽出のためのマルチスケールCNNを組み合わせたGaMNetを提案する。
本手法はより少ないパラメータと高速な計算で高いセグメンテーション精度を実現する。
- 参考スコア(独自算出の注目度): 2.3649376465820384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gliomas are aggressive brain tumors that pose serious health risks. Deep learning aids in lesion segmentation, but CNN and Transformer-based models often lack context modeling or demand heavy computation, limiting real-time use on mobile medical devices. We propose GaMNet, integrating the NMamba module for global modeling and a multi-scale CNN for efficient local feature extraction. To improve interpretability and mimic the human visual system, we apply Gabor filters at multiple scales. Our method achieves high segmentation accuracy with fewer parameters and faster computation. Extensive experiments show GaMNet outperforms existing methods, notably reducing false positives and negatives, which enhances the reliability of clinical diagnosis.
- Abstract(参考訳): グリオーマは、深刻な健康リスクを引き起こす攻撃的な脳腫瘍である。
ディープラーニングは病変のセグメンテーションを補助するが、CNNとTransformerベースのモデルはコンテキストモデリングが欠如したり、重い計算を必要とすることが多く、モバイル医療機器でのリアルタイム使用を制限する。
グローバルモデリングのためのNMambaモジュールと,効率的な局所特徴抽出のためのマルチスケールCNNを組み合わせたGaMNetを提案する。
解釈性を改善し,人間の視覚システムを模倣するために,複数のスケールでGaborフィルタを適用した。
本手法はより少ないパラメータと高速な計算で高いセグメンテーション精度を実現する。
大規模な実験では、GaMNetは既存の方法よりも優れており、特に偽陽性と陰性が減少し、臨床診断の信頼性が向上している。
関連論文リスト
- A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation [45.39707664801522]
後腹膜には、稀な良性および悪性型を含む様々な腫瘍があり、診断と治療の課題を引き起こす。
腫瘍径の推定は不規則な形状のため困難であり,手動分割は時間を要する。
本研究は,CNN,ViT,Mamba,xLSTMなどのU-Net拡張を,新しい社内CTデータセットと公開臓器セグメンテーションデータセットに基づいて評価する。
論文 参考訳(メタデータ) (2025-02-01T04:25:28Z) - MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
本研究では,マルチブランチ残差ブロックを統合した3次元U-Netフレームワークを用いたMBDRes-U-Netモデルを提案する。
モデルの計算負担は分岐戦略によって低減され、マルチモーダル画像のリッチな局所的特徴を効果的に活用する。
論文 参考訳(メタデータ) (2024-11-04T09:03:43Z) - EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation [3.6813810514531085]
我々は,EM-Netと呼ばれる新しい3次元医用画像セグメンテーションモデルを紹介し,その成功に触発されて,新しいマンバベースの3次元医用画像セグメンテーションモデルであるEM-Netを紹介した。
提案手法は,SOTAモデルのパラメータサイズをほぼ半分にし,訓練速度を2倍に向上させながら,より高精度なセグメンテーション精度を示すことを示す。
論文 参考訳(メタデータ) (2024-09-26T09:34:33Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion [0.1935997508026988]
我々は,ヒト非小細胞肺癌の悪性度を規定するセグメンテーションモデル(DRU-Net)を提案している。
我々は提案したモデルを作成するために2つのデータセット(ノルウェーの肺がんバイオバンクとHaukeland大学肺がんコホート)を使用した。
提案した空間拡張法(マルチレンズ歪み)により,ネットワーク性能は3%向上した。
論文 参考訳(メタデータ) (2024-06-20T13:14:00Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Building Flyweight FLIM-based CNNs with Adaptive Decoding for Object
Detection [40.97322222472642]
本研究では、ユーザ描画マーカーからオブジェクトを検出するために、畳み込みニューラルネットワーク(CNN)層を構築する方法を提案する。
糞便サンプルの顕微鏡画像におけるSchistosomiasis mansoni卵の検出と,衛星画像における船舶の検出に対処する。
我々のCNNは、SOTAオブジェクト検出器より数千倍も小さく、CPU実行に適している。
論文 参考訳(メタデータ) (2023-06-26T16:48:20Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。