A critical assessment of reinforcement learning methods for microswimmer navigation in complex flows
- URL: http://arxiv.org/abs/2505.05525v1
- Date: Thu, 08 May 2025 09:17:26 GMT
- Title: A critical assessment of reinforcement learning methods for microswimmer navigation in complex flows
- Authors: Selim Mecanna, Aurore Loisy, Christophe Eloy,
- Abstract summary: Navigating in a fluid flow while being carried by it, using only accessible information from on-board sensors, is a problem commonly faced by small planktonic organisms.<n>In the last ten years, the fluid mechanics community has widely adopted reinforcement learning, often in the form of its simplest implementations.<n>But it is unclear how good are the strategies learned by these algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Navigating in a fluid flow while being carried by it, using only information accessible from on-board sensors, is a problem commonly faced by small planktonic organisms. It is also directly relevant to autonomous robots deployed in the oceans. In the last ten years, the fluid mechanics community has widely adopted reinforcement learning, often in the form of its simplest implementations, to address this challenge. But it is unclear how good are the strategies learned by these algorithms. In this paper, we perform a quantitative assessment of reinforcement learning methods applied to navigation in partially observable flows. We first introduce a well-posed problem of directional navigation for which a quasi-optimal policy is known analytically. We then report on the poor performance and robustness of commonly used algorithms (Q-Learning, Advantage Actor Critic) in flows regularly encountered in the literature: Taylor-Green vortices, Arnold-Beltrami-Childress flow, and two-dimensional turbulence. We show that they are vastly surpassed by PPO (Proximal Policy Optimization), a more advanced algorithm that has established dominance across a wide range of benchmarks in the reinforcement learning community. In particular, our custom implementation of PPO matches the theoretical quasi-optimal performance in turbulent flow and does so in a robust manner. Reaching this result required the use of several additional techniques, such as vectorized environments and generalized advantage estimation, as well as hyperparameter optimization. This study demonstrates the importance of algorithm selection, implementation details, and fine-tuning for discovering truly smart autonomous navigation strategies in complex flows.
Related papers
- Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
We show that an RMS's implicit behavior can be explicitly captured by a "central flow:" a differential equation.
We show that these flows can empirically predict long-term optimization trajectories of generic neural networks.
arXiv Detail & Related papers (2024-10-31T17:58:13Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications [11.010530034121224]
We introduce a novel Deep Q-learning algorithm that significantly improves learning speed.<n>The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success.
arXiv Detail & Related papers (2023-11-28T18:59:58Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
Reinforcement learning (RL) is a promising approach for robotic navigation, allowing robots to learn through trial and error.<n>Real-world robotic tasks often suffer from sparse rewards, leading to inefficient exploration and suboptimal policies.<n>We introduce Confidence-Controlled Exploration (CCE), a novel method that improves sample efficiency in RL-based robotic navigation without modifying the reward function.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Online Bayesian Meta-Learning for Cognitive Tracking Radar [9.805913930878]
We develop an online meta-learning approach for waveform-agile tracking.
We exploit inherent similarity across tracking scenes, attributed to common physical elements such as target type or clutter.
arXiv Detail & Related papers (2022-07-07T20:21:54Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
We introduce prompt-based learning to achieve fast adaptation for language embeddings.
Our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE.
arXiv Detail & Related papers (2022-03-08T11:01:24Z) - Optimal control of point-to-point navigation in turbulent time-dependent
flows using Reinforcement Learning [0.0]
We present theoretical and numerical results concerning the problem to find the path that minimizes time to navigate between two given points in a complex fluid.
We show that ActorCritic algorithms are able to find quasi-optimal solutions in the presence of either time-independent or chaotically evolving flow configurations.
arXiv Detail & Related papers (2021-02-27T21:31:18Z) - Learning Efficient Navigation in Vortical Flow Fields [6.585044528359311]
We apply a novel Reinforcement Learning algorithm to steer a fixed-speed swimmer through an unsteady two-dimensional flow field.
The algorithm entails inputting environmental cues into a deep neural network that determines the swimmer's actions.
A velocity sensing approach outperformed a bio-mimetic vorticity sensing approach by nearly two-fold in success rate.
arXiv Detail & Related papers (2021-02-21T07:25:03Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
Relative Entropy Q-Learning (REQ) is a simple policy algorithm that combines ideas from successful offline and conventional RL algorithms.
We show how REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations.
arXiv Detail & Related papers (2020-10-16T18:48:49Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.