Starting Positions Matter: A Study on Better Weight Initialization for Neural Network Quantization
- URL: http://arxiv.org/abs/2506.10463v1
- Date: Thu, 12 Jun 2025 08:11:34 GMT
- Title: Starting Positions Matter: A Study on Better Weight Initialization for Neural Network Quantization
- Authors: Stone Yun, Alexander Wong,
- Abstract summary: Quantization-specific model development techniques such as regularization, quantization-aware training, and quantization-robustness penalties have served to greatly boost the accuracy and robustness of modern DNNs.<n>We present an extensive study examining the effects of different weight initializations on a variety of CNN building blocks commonly used in efficient CNNs.<n>Next, we explore a new method for quantization-robust CNN initialization -- using Graph Hypernetworks (GHN) to predict parameters of quantized DNNs.
- Score: 71.44469196328507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural network (DNN) quantization for fast, efficient inference has been an important tool in limiting the cost of machine learning (ML) model inference. Quantization-specific model development techniques such as regularization, quantization-aware training, and quantization-robustness penalties have served to greatly boost the accuracy and robustness of modern DNNs. However, very little exploration has been done on improving the initial conditions of DNN training for quantization. Just as random weight initialization has been shown to significantly impact test accuracy of floating point models, it would make sense that different weight initialization methods impact quantization robustness of trained models. We present an extensive study examining the effects of different weight initializations on a variety of CNN building blocks commonly used in efficient CNNs. This analysis reveals that even with varying CNN architectures, the choice of random weight initializer can significantly affect final quantization robustness. Next, we explore a new method for quantization-robust CNN initialization -- using Graph Hypernetworks (GHN) to predict parameters of quantized DNNs. Besides showing that GHN-predicted parameters are quantization-robust after regular float32 pretraining (of the GHN), we find that finetuning GHNs to predict parameters for quantized graphs (which we call GHN-QAT) can further improve quantized accuracy of CNNs. Notably, GHN-QAT shows significant accuracy improvements for even 4-bit quantization and better-than-random accuracy for 2-bits. To the best of our knowledge, this is the first in-depth study on quantization-aware DNN weight initialization. GHN-QAT offers a novel approach to quantized DNN model design. Future investigations, such as using GHN-QAT-initialized parameters for quantization-aware training, can further streamline the DNN quantization process.
Related papers
- Low-bit Model Quantization for Deep Neural Networks: A Survey [123.89598730307208]
This article surveys the recent five-year progress towards low-bit quantization on deep neural networks (DNNs)<n>We discuss and compare the state-of-the-art quantization methods and classify them into 8 main categories and 24 sub-categories according to their core techniques.<n>We shed light on the potential research opportunities in the field of model quantization.
arXiv Detail & Related papers (2025-05-08T13:26:19Z) - SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks [1.0923877073891446]
Spiking neural networks (SNNs) share the goal of enhancing efficiency, but adopt an 'event-driven' approach to reduce the power consumption of neural network inference.
This paper introduces two QAT schemes for stateful neurons: (i) a uniform quantization strategy, an established method for weight quantization, and (ii) threshold-centered quantization.
Our results show that increasing the density of quantization levels around the firing threshold improves accuracy across several benchmark datasets.
arXiv Detail & Related papers (2024-04-15T03:07:16Z) - GHN-QAT: Training Graph Hypernetworks to Predict Quantization-Robust
Parameters of Unseen Limited Precision Neural Networks [80.29667394618625]
Graph Hypernetworks (GHN) can predict the parameters of varying unseen CNN architectures with surprisingly good accuracy.
Preliminary research has explored the use of GHNs to predict quantization-robust parameters for 8-bit and 4-bit quantized CNNs.
We show that quantization-aware training can significantly improve quantized accuracy for GHN predicted parameters of 4-bit quantized CNNs.
arXiv Detail & Related papers (2023-09-24T23:01:00Z) - GHN-Q: Parameter Prediction for Unseen Quantized Convolutional
Architectures via Graph Hypernetworks [80.29667394618625]
We conduct the first-ever study exploring the use of graph hypernetworks for predicting parameters of unseen quantized CNN architectures.
We focus on a reduced CNN search space and find that GHN-Q can in fact predict quantization-robust parameters for various 8-bit quantized CNNs.
arXiv Detail & Related papers (2022-08-26T08:00:02Z) - A Comprehensive Survey on Model Quantization for Deep Neural Networks in
Image Classification [0.0]
A promising approach is quantization, in which the full-precision values are stored in low bit-width precision.
We present a comprehensive survey of quantization concepts and methods, with a focus on image classification.
We explain the replacement of floating-point operations with low-cost bitwise operations in a quantized DNN and the sensitivity of different layers in quantization.
arXiv Detail & Related papers (2022-05-14T15:08:32Z) - Where Should We Begin? A Low-Level Exploration of Weight Initialization
Impact on Quantized Behaviour of Deep Neural Networks [93.4221402881609]
We present an in-depth, fine-grained ablation study of the effect of different weights initialization on the final distributions of weights and activations of different CNN architectures.
To our best knowledge, we are the first to perform such a low-level, in-depth quantitative analysis of weights initialization and its effect on quantized behaviour.
arXiv Detail & Related papers (2020-11-30T06:54:28Z) - Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural
Networks [0.0]
We propose a new pruning method called Pruning for Quantization (PfQ) which removes the filters that disturb the fine-tuning of the DNN.
Experiments using well-known models and datasets confirmed that the proposed method achieves higher performance with a similar model size.
arXiv Detail & Related papers (2020-11-13T04:12:54Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.