論文の概要: Cardioformer: Advancing AI in ECG Analysis with Multi-Granularity Patching and ResNet
- arxiv url: http://arxiv.org/abs/2505.05538v1
- Date: Thu, 08 May 2025 16:44:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.024176
- Title: Cardioformer: Advancing AI in ECG Analysis with Multi-Granularity Patching and ResNet
- Title(参考訳): Cardioformer: マルチグラニティパッチとResNetによるECG分析におけるAIの強化
- Authors: Md Kamrujjaman Mobin, Md Saiful Islam, Sadik Al Barid, Md Masum,
- Abstract要約: Cardioformerは、新しいマルチグラニュラリティハイブリッドモデルである。
チャネル間のパッチ、階層的残差学習、および2段階の自己認識機構を統合している。
一貫して4つの最先端のベースラインを上回ります。
- 参考スコア(独自算出の注目度): 0.6919386619690135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiogram (ECG) classification is crucial for automated cardiac disease diagnosis, yet existing methods often struggle to capture local morphological details and long-range temporal dependencies simultaneously. To address these challenges, we propose Cardioformer, a novel multi-granularity hybrid model that integrates cross-channel patching, hierarchical residual learning, and a two-stage self-attention mechanism. Cardioformer first encodes multi-scale token embeddings to capture fine-grained local features and global contextual information and then selectively fuses these representations through intra- and inter-granularity self-attention. Extensive evaluations on three benchmark ECG datasets under subject-independent settings demonstrate that model consistently outperforms four state-of-the-art baselines. Our Cardioformer model achieves the AUROC of 96.34$\pm$0.11, 89.99$\pm$0.12, and 95.59$\pm$1.66 in MIMIC-IV, PTB-XL and PTB dataset respectively outperforming PatchTST, Reformer, Transformer, and Medformer models. It also demonstrates strong cross-dataset generalization, achieving 49.18% AUROC on PTB and 68.41% on PTB-XL when trained on MIMIC-IV. These findings underscore the potential of Cardioformer to advance automated ECG analysis, paving the way for more accurate and robust cardiovascular disease diagnosis. We release the source code at https://github.com/KMobin555/Cardioformer.
- Abstract(参考訳): 心電図(ECG)分類は心疾患の診断に重要であるが、既存の手法では局所的な形態的詳細と長期の時間的依存関係を同時に捉えるのに苦慮することが多い。
これらの課題に対処するため、我々は、チャネル間のパッチ、階層的残差学習、および2段階の自己認識機構を統合した、新しいマルチグラニュラリティハイブリッドモデルであるCardioformerを提案する。
Cardioformerはまずマルチスケールのトークン埋め込みをエンコードし、きめ細かいローカル特徴とグローバルなコンテキスト情報をキャプチャし、その表現を粒内および粒内自己認識を通じて選択的に融合させる。
対象に依存しない設定下での3つのベンチマークECGデータセットの大規模な評価は、モデルが一貫して4つの最先端ベースラインを上回っていることを示している。
我々のカードフォーマーモデルは、MIMIC-IV, PTB-XL, PTBデータセットにおいて、96.34$\pm$0.11, 89.99$\pm$0.12, 95.59$\pm$1.66のAUROCをそれぞれPatchTST, Reformer, Transformer, Medformerモデルより優れている。
また、PTBでは49.18%のAUROC、MIMIC-IVでは68.41%を達成している。
以上の結果から,心電図自動解析の進歩と,より正確で堅牢な心血管疾患診断への道を開く可能性が示唆された。
ソースコードはhttps://github.com/KMobin555/Cardioformer.comで公開しています。
関連論文リスト
- xLSTM-ECG: Multi-label ECG Classification via Feature Fusion with xLSTM [14.02717596836022]
本稿では,ECG信号のマルチラベル分類手法であるxLSTM-ECGを提案する。
我々の知る限り、この研究は、マルチラベルECG分類に特化して適応したxLSTMモジュールの設計と応用を表すものである。
論文 参考訳(メタデータ) (2025-04-14T16:12:46Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients [3.676588766498097]
心房細動(AF)は、心臓不整脈の最も多い形態であり、死亡率と死亡率の増加と関連している。
この研究は、Unet、ResNet、EfficientNet、VGGを含む複数の機械学習モデルを統合するアンサンブルアプローチを示し、LGE-MRIデータから自動両房セグメンテーションを実行する。
論文 参考訳(メタデータ) (2024-09-24T13:33:46Z) - Prospects for AI-Enhanced ECG as a Unified Screening Tool for Cardiac and Non-Cardiac Conditions -- An Explorative Study in Emergency Care [0.9503773054285559]
本研究は,救急部門で収集した心電図に基づいて,心臓および非心臓の退院診断の多様な範囲を予測できる単一モデルの有用性について検討する。
その結果,AUROCスコア0.8を超えるという意味では,253,81心,172非心,ICD符号を統計的に有意に予測できることがわかった。
論文 参考訳(メタデータ) (2023-12-18T09:29:42Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
本稿では,心電図の心拍数分類のための2つの計算効率の良いマルチモーダル融合フレームワークを提案する。
MFFでは,CNNの垂直層から特徴を抽出し,それらを融合させてユニークかつ相互依存的な情報を得た。
不整脈では99.7%,MIでは99.2%の分類が得られた。
論文 参考訳(メタデータ) (2021-07-21T03:48:35Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
本研究では,人工知能を用いた心房細動検出法を提案する。
本研究の目的は, 心臓科医と人工知能の診断精度をリードI心電図と比較することである。
論文 参考訳(メタデータ) (2021-04-15T12:50:16Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
我々は,心電図の診断を分類するために,形態や信号処理機能に適合した勾配強化木のアンサンブルを用いたアルゴリズムを構築した。
各リードについて、心拍変動、PQRSTテンプレート形状、全信号波形から特徴を導出する。
各クラスに属するECGインスタンスの確率を予測するため、全12項目の特徴と合わせて、勾配を増す決定ツリーの集合に適合する。
論文 参考訳(メタデータ) (2020-10-21T18:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。