A Circuit-QED Lattice System with Flexible Connectivity and Gapped Flat Bands for Photon-Mediated Spin Models
- URL: http://arxiv.org/abs/2505.05559v1
- Date: Thu, 08 May 2025 18:00:02 GMT
- Title: A Circuit-QED Lattice System with Flexible Connectivity and Gapped Flat Bands for Photon-Mediated Spin Models
- Authors: Kellen O'Brien, Maya Amouzegar, Won Chan Lee, Martin Ritter, Alicia J. Kollár,
- Abstract summary: We present the first device featuring a quasi-1D CPW lattice with a non-trivial band structure and multiple transmon qubits.<n>This device completes the toolkit needed to realize CPW lattices with qubits in one or two Euclidean dimensions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum spin models are ubiquitous in solid-state physics, but classical simulation of them remains extremely challenging. Experimental testbed systems with a variety of spin-spin interactions and measurement channels are therefore needed. One promising potential route to such testbeds is provided by microwave-photon-mediated interactions between superconducting qubits, where native strong light-matter coupling enables significant interactions even for virtual-photon-mediated processes. In this approach, the spin-model connectivity is set by the photonic mode structure, rather than the spatial structure of the qubit. Lattices of coplanar-waveguide (CPW) resonators have been demonstrated to allow extremely flexible connectivities and can therefore host a huge variety of photon-mediated spin models. However, large-scale CPW lattices have never before been successfully combined with superconducting qubits. Here we present the first such device featuring a quasi-1D CPW lattice with a non-trivial band structure and multiple transmon qubits. We demonstrate that superconducting-qubit readout and diagnostic techniques can be generalized to this highly multimode environment and observe the effective qubit-qubit interaction mediated by the bands of the resonator lattice. This device completes the toolkit needed to realize CPW lattices with qubits in one or two Euclidean dimensions, or negatively-curved hyperbolic space, and paves the way to driven-dissipative spin models with a large variety of connectivities.
Related papers
- Versatile photonic frequency synthetic dimensions using a single Mach-Zehnder-interferometer-assisted device on thin-film lithium niobate [10.886341422699243]
We experimentally fabricate a two-resonator prototype on the TFLN platform.
We realize well-known models including tight-binding lattices, topological Hall ladder and Creutz ladder.
arXiv Detail & Related papers (2024-11-20T13:56:55Z) - Spin-photon entanglement with direct photon emission in the telecom
C-band [0.0]
Solid-state quantum emitters in the telecom C-band are a promising platform for quantum communication applications.
We report the first demonstration of spin-photon entanglement in a solid-state system capable of direct emission into the telecom C-band.
arXiv Detail & Related papers (2023-10-25T18:53:42Z) - Extended Josephson junction qubit system [0.0]
Circuit quantum electrodynamics (QED) has emerged as a promising platform for implementing quantum computation and simulation.
We introduce a novel QED architecture based on extended Josephson Junctions (JJs), which possess a non-negligible spatial extent.
Our platform has potential applications in quantum computation, specifically in implementing single- and two-qubit gates within a single junction.
arXiv Detail & Related papers (2023-09-11T03:17:39Z) - Methods for transverse and longitudinal spin-photon coupling in silicon
quantum dots with intrinsic spin-orbit effect [0.32301042014102566]
This paper examines the theory of both transverse and longitudinal spin-photon coupling.
We propose a method of coupling which uses the intrinsic spin-orbit interaction arising from orbital degeneracies in SiMOS qubits.
We also evaluate the feasibility of a longitudinal coupling driven by an AC modulation on the qubit.
arXiv Detail & Related papers (2023-08-24T08:04:28Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Fully tunable longitudinal spin-photon interactions in Si and Ge quantum
dots [0.0]
We show that large longitudinal interactions emerge naturally in state-of-the-art hole spin qubits.
We propose realistic protocols to measure these interactions and to implement fast and high-fidelity two-qubit entangling gates.
arXiv Detail & Related papers (2022-03-31T16:36:53Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.