LiteLMGuard: Seamless and Lightweight On-Device Prompt Filtering for Safeguarding Small Language Models against Quantization-induced Risks and Vulnerabilities
- URL: http://arxiv.org/abs/2505.05619v2
- Date: Mon, 12 May 2025 20:32:53 GMT
- Title: LiteLMGuard: Seamless and Lightweight On-Device Prompt Filtering for Safeguarding Small Language Models against Quantization-induced Risks and Vulnerabilities
- Authors: Kalyan Nakka, Jimmy Dani, Ausmit Mondal, Nitesh Saxena,
- Abstract summary: LiteLMGuard (LLMG) provides real-time, prompt-level defense for quantized SLMs.<n>LLMG formalizes prompt filtering as a deep learning (DL)-based prompt answerability classification task.<n>LLMG defends against over 87% of harmful prompts, including both direct instruction and jailbreak attack strategies.
- Score: 1.460362586787935
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The growing adoption of Large Language Models (LLMs) has influenced the development of their lighter counterparts-Small Language Models (SLMs)-to enable on-device deployment across smartphones and edge devices. These SLMs offer enhanced privacy, reduced latency, server-free functionality, and improved user experience. However, due to resource constraints of on-device environment, SLMs undergo size optimization through compression techniques like quantization, which can inadvertently introduce fairness, ethical and privacy risks. Critically, quantized SLMs may respond to harmful queries directly, without requiring adversarial manipulation, raising significant safety and trust concerns. To address this, we propose LiteLMGuard (LLMG), an on-device prompt guard that provides real-time, prompt-level defense for quantized SLMs. Additionally, our prompt guard is designed to be model-agnostic such that it can be seamlessly integrated with any SLM, operating independently of underlying architectures. Our LLMG formalizes prompt filtering as a deep learning (DL)-based prompt answerability classification task, leveraging semantic understanding to determine whether a query should be answered by any SLM. Using our curated dataset, Answerable-or-Not, we trained and fine-tuned several DL models and selected ELECTRA as the candidate, with 97.75% answerability classification accuracy. Our safety effectiveness evaluations demonstrate that LLMG defends against over 87% of harmful prompts, including both direct instruction and jailbreak attack strategies. We further showcase its ability to mitigate the Open Knowledge Attacks, where compromised SLMs provide unsafe responses without adversarial prompting. In terms of prompt filtering effectiveness, LLMG achieves near state-of-the-art filtering accuracy of 94%, with an average latency of 135 ms, incurring negligible overhead for users.
Related papers
- SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks [17.77094760401298]
We study the vulnerability of fine-tuned large language models to membership inference attacks (MIAs)<n>We propose SOFT, a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection.
arXiv Detail & Related papers (2025-06-12T07:23:56Z) - Robust Anti-Backdoor Instruction Tuning in LVLMs [53.766434746801366]
We introduce a lightweight, certified-agnostic defense framework for large visual language models (LVLMs)<n>Our framework finetunes only adapter modules and text embedding layers under instruction tuning.<n>Experiments against seven attacks on Flickr30k and MSCOCO demonstrate that ours reduces their attack success rate to nearly zero.
arXiv Detail & Related papers (2025-06-04T01:23:35Z) - Defeating Prompt Injections by Design [79.00910871948787]
CaMeL is a robust defense that creates a protective system layer around the Large Language Models (LLMs)<n>To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query.<n>We demonstrate effectiveness of CaMeL by solving $67%$ of tasks with provable security in AgentDojo [NeurIPS 2024], a recent agentic security benchmark.
arXiv Detail & Related papers (2025-03-24T15:54:10Z) - Can Small Language Models Reliably Resist Jailbreak Attacks? A Comprehensive Evaluation [10.987263424166477]
Small language models (SLMs) have emerged as promising alternatives to large language models (LLMs)<n>In this paper, we conduct the first large-scale empirical study of SLMs' vulnerabilities to jailbreak attacks.<n>We identify four key factors: model size, model architecture, training datasets and training techniques.
arXiv Detail & Related papers (2025-03-09T08:47:16Z) - Enhancing the Capability and Robustness of Large Language Models through Reinforcement Learning-Driven Query Refinement [35.50259088854813]
The capacity of large language models (LLMs) to generate honest, harmless, and helpful responses heavily relies on the quality of user prompts.<n>This study proposes a transferable and pluggable framework that refines user prompts before they are input into LLMs.<n>This strategy improves the quality of the queries, empowering LLMs to generate more truthful, benign and useful responses.
arXiv Detail & Related papers (2024-07-01T16:55:28Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)<n>Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.<n> Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
Leakage of system prompts may compromise intellectual property and act as adversarial reconnaissance for an attacker.
We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting.
We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts.
arXiv Detail & Related papers (2024-04-24T23:39:58Z) - Protecting Your LLMs with Information Bottleneck [20.870610473199125]
We introduce the Information Bottleneck Protector (IBProtector), a defense mechanism grounded in the information bottleneck principle.
The IBProtector selectively compresses and perturbs prompts, facilitated by a lightweight and trainable extractor.
Our empirical evaluations show that IBProtector outperforms current defense methods in mitigating jailbreak attempts.
arXiv Detail & Related papers (2024-04-22T08:16:07Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction.
Inspired by these findings, we propose a method for safety prompt optimization, namely DRO.
Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness.
arXiv Detail & Related papers (2024-01-31T17:28:24Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.<n>Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.<n>We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.