SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks
- URL: http://arxiv.org/abs/2506.10424v1
- Date: Thu, 12 Jun 2025 07:23:56 GMT
- Title: SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks
- Authors: Kaiyuan Zhang, Siyuan Cheng, Hanxi Guo, Yuetian Chen, Zian Su, Shengwei An, Yuntao Du, Charles Fleming, Ashish Kundu, Xiangyu Zhang, Ninghui Li,
- Abstract summary: We study the vulnerability of fine-tuned large language models to membership inference attacks (MIAs)<n>We propose SOFT, a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection.
- Score: 17.77094760401298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved remarkable success and are widely adopted for diverse applications. However, fine-tuning these models often involves private or sensitive information, raising critical privacy concerns. In this work, we conduct the first comprehensive study evaluating the vulnerability of fine-tuned LLMs to membership inference attacks (MIAs). Our empirical analysis demonstrates that MIAs exploit the loss reduction during fine-tuning, making them highly effective in revealing membership information. These findings motivate the development of our defense. We propose SOFT (\textbf{S}elective data \textbf{O}bfuscation in LLM \textbf{F}ine-\textbf{T}uning), a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection. Our extensive experiments span six diverse domains and multiple LLM architectures and scales. Results show that SOFT effectively reduces privacy risks while maintaining competitive model performance, offering a practical and scalable solution to safeguard sensitive information in fine-tuned LLMs.
Related papers
- FedShield-LLM: A Secure and Scalable Federated Fine-Tuned Large Language Model [0.48342038441006796]
Federated Learning (FL) offers a decentralized framework for training and fine-tuning Large Language Models (LLMs)<n>FL addresses privacy and security concerns while navigating challenges associated with the substantial computational demands of LLMs.<n>We propose a novel method, FedShield-LLM, that uses pruning with Fully Homomorphic Encryption (FHE) for Low-Rank Adaptation (LoRA) parameters.
arXiv Detail & Related papers (2025-06-06T00:05:05Z) - Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited.<n>We propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences.
arXiv Detail & Related papers (2025-04-14T09:03:51Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Differentially Private Steering for Large Language Model Alignment [55.30573701583768]
We present the first study of aligning Large Language Models with private datasets.<n>Our work proposes the Private Steering for LLM Alignment (PSA) algorithm to edit activations with differential privacy guarantees.<n>Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance.
arXiv Detail & Related papers (2025-01-30T17:58:36Z) - Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions [11.338466798715906]
Fine-tuning Large Language Models (LLMs) can achieve state-of-the-art performance across various domains.<n>This paper provides a comprehensive survey of privacy challenges associated with fine-tuning LLMs.<n>We highlight vulnerabilities to various privacy attacks, including membership inference, data extraction, and backdoor attacks.
arXiv Detail & Related papers (2024-12-21T06:41:29Z) - Model-based Large Language Model Customization as Service [34.949731264918846]
Large Language Model (LLM) services from providers like OpenAI and Google excel at general tasks but often underperform on domain-specific applications.<n>We introduce Llamdex, a novel framework that facilitates LLM customization as a service, where the client uploads pre-trained domain-specific models rather than data.<n> Experiments demonstrate that Llamdex improves domain-specific accuracy by up to 26% over state-of-the-art private data synthesis methods under identical privacy constraints.
arXiv Detail & Related papers (2024-10-14T13:18:20Z) - Unveiling the Vulnerability of Private Fine-Tuning in Split-Based Frameworks for Large Language Models: A Bidirectionally Enhanced Attack [20.727726850786386]
BiSR is the first data reconstruction attack designed to target both the forward and backward propagation processes of split learning (SL)
We propose BiSR, the first data reconstruction attack (DRA) designed to target both the forward and backward propagation processes of SL.
arXiv Detail & Related papers (2024-09-02T06:01:20Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
This article introduces DP-LoRA, a novel federated learning algorithm tailored for large language models (LLMs)
DP-LoRA preserves data privacy by employing a Gaussian mechanism that adds noise in weight updates, maintaining individual data privacy while facilitating collaborative model training.
arXiv Detail & Related papers (2023-12-29T06:50:38Z) - Last One Standing: A Comparative Analysis of Security and Privacy of
Soft Prompt Tuning, LoRA, and In-Context Learning [25.454403998164203]
Large Language Models (LLMs) are powerful tools for natural language processing, enabling novel applications and user experiences.
LLMs often require adaptation with private data, which poses privacy and security challenges.
Several techniques have been proposed to adapt LLMs with private data, but their comparative privacy and security properties have not been systematically investigated.
arXiv Detail & Related papers (2023-10-17T17:03:00Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.