Predicting Diabetic Macular Edema Treatment Responses Using OCT: Dataset and Methods of APTOS Competition
- URL: http://arxiv.org/abs/2505.05768v1
- Date: Fri, 09 May 2025 04:12:05 GMT
- Title: Predicting Diabetic Macular Edema Treatment Responses Using OCT: Dataset and Methods of APTOS Competition
- Authors: Weiyi Zhang, Peranut Chotcomwongse, Yinwen Li, Pusheng Xu, Ruijie Yao, Lianhao Zhou, Yuxuan Zhou, Hui Feng, Qiping Zhou, Xinyue Wang, Shoujin Huang, Zihao Jin, Florence H. T. Chung, Shujun Wang, Yalin Zheng, Mingguang He, Danli Shi, Paisan Ruamviboonsuk,
- Abstract summary: We organized the 2nd Asia-Pacific Tele-Ophthalmology Society (APTOS) Big Data Competition in 2021.<n>The competition focused on improving predictive accuracy for anti-VEGF therapy responses using ophthalmic OCT images.<n>This paper details the competition's structure, dataset, leading methods, and evaluation metrics.
- Score: 12.617571811884499
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diabetic macular edema (DME) significantly contributes to visual impairment in diabetic patients. Treatment responses to intravitreal therapies vary, highlighting the need for patient stratification to predict therapeutic benefits and enable personalized strategies. To our knowledge, this study is the first to explore pre-treatment stratification for predicting DME treatment responses. To advance this research, we organized the 2nd Asia-Pacific Tele-Ophthalmology Society (APTOS) Big Data Competition in 2021. The competition focused on improving predictive accuracy for anti-VEGF therapy responses using ophthalmic OCT images. We provided a dataset containing tens of thousands of OCT images from 2,000 patients with labels across four sub-tasks. This paper details the competition's structure, dataset, leading methods, and evaluation metrics. The competition attracted strong scientific community participation, with 170 teams initially registering and 41 reaching the final round. The top-performing team achieved an AUC of 80.06%, highlighting the potential of AI in personalized DME treatment and clinical decision-making.
Related papers
- Interpretable AI-driven Guidelines for Type 2 Diabetes Treatment from Observational Data [0.0]
We create precise, structured, data-backed guidelines for type 2 diabetes treatment progression.<n>We train AI-backed tree-based models to prescribe treatment changes.<n>In this process, we prioritize stepping up to a more aggressive treatment before considering less aggressive options.
arXiv Detail & Related papers (2025-04-16T18:29:45Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.<n>This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - ISLES'24: Improving final infarct prediction in ischemic stroke using multimodal imaging and clinical data [3.2816454618159008]
This work presents the ISLES'24 challenge, which addresses final post-treatment stroke infarct prediction from pre-interventional acute stroke imaging and clinical data.
The contributions of this work are two-fold: first, we introduce a standardized benchmarking of final stroke infarct segmentation algorithms through the ISLES'24 challenge; second, we provide insights into infarct segmentation using multimodal imaging and clinical data strategies.
arXiv Detail & Related papers (2024-08-20T16:01:05Z) - Assisting Clinical Decisions for Scarcely Available Treatment via
Disentangled Latent Representation [5.1828964748013275]
Treatment Variational AutoEncoder (TVAE) is a novel approach for individualized treatment analysis.
TVAE is specifically designed to address the modeling challenges like ECMO with strong treatment selection bias and scarce treatment cases.
We evaluate TVAE on two real-world COVID-19 datasets: an international dataset collected from 1651 hospitals across 63 countries, and a institutional dataset collected from 15 hospitals.
arXiv Detail & Related papers (2023-07-06T22:02:33Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
We propose an ensemble method to automatically grade Diabetic retinopathy (DR) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, and train them to grade UW- OCTA images with different splits of the available dataset.
Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions.
arXiv Detail & Related papers (2022-12-12T22:06:47Z) - Prediction of drug effectiveness in rheumatoid arthritis patients based
on machine learning algorithms [2.5759046095742453]
Rheumatoid arthritis (RA) is an autoimmune condition caused when patients' immune system mistakenly targets their own tissue.
Machine learning (ML) has the potential to identify patterns in patient electronic health records to forecast the best clinical treatment to improve patient outcomes.
This study introduced a Drug Response Prediction (TNF) framework with two main goals: 1) design a data processing pipeline to extract information from clinical data, and then preprocess it for functional use, and 2) predict RA patient's responses to drugs and evaluate classification models' performance.
arXiv Detail & Related papers (2022-10-14T15:15:37Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-US is an open-access benchmark dataset of COVID-19 related ultrasound imaging data.
It consists of 93 lung ultrasound videos and 10,774 processed images of patients infected with SARS-CoV-2 pneumonia, non-SARS-CoV-2 pneumonia, as well as healthy control cases.
arXiv Detail & Related papers (2021-03-18T03:31:33Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.