論文の概要: New Statistical and Computational Results for Learning Junta Distributions
- arxiv url: http://arxiv.org/abs/2505.05819v2
- Date: Mon, 19 May 2025 22:58:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.235695
- Title: New Statistical and Computational Results for Learning Junta Distributions
- Title(参考訳): ユンタ分布学習のための新しい統計的・計算的結果
- Authors: Lorenzo Beretta,
- Abstract要約: 我々は、$k$-junta分布の学習は、ノイズを伴う$k$-parity関数の学習と等価であることを示す。
統計的複雑性が最適であるユンタ分布を学習するためのアルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 0.38073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of learning junta distributions on $\{0, 1\}^n$, where a distribution is a $k$-junta if its probability mass function depends on a subset of at most $k$ variables. We make two main contributions: - We show that learning $k$-junta distributions is \emph{computationally} equivalent to learning $k$-parity functions with noise (LPN), a landmark problem in computational learning theory. - We design an algorithm for learning junta distributions whose statistical complexity is optimal, up to polylogarithmic factors. Computationally, our algorithm matches the complexity of previous (non-sample-optimal) algorithms. Combined, our two contributions imply that our algorithm cannot be significantly improved, statistically or computationally, barring a breakthrough for LPN.
- Abstract(参考訳): 確率質量関数が少なくとも$k$変数の部分集合に依存する場合、分布は$k$-juntaである。
我々は2つの主要な貢献をしている: - 学習の$k$-junta分布が、ノイズを伴う$k$-parity関数(LPN)の学習と等価であることを示す。
統計的複雑性が最適であるユンタ分布を多対数因子まで学習するアルゴリズムを設計する。
計算学的に、我々のアルゴリズムは以前の(サンプルでない)アルゴリズムの複雑さと一致する。
この2つのコントリビューションを組み合わせると、我々のアルゴリズムは統計的、あるいは計算学的に著しく改善されず、LPNのブレークスルーを抑えることが示唆される。
関連論文リスト
- Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Information-Computation Tradeoffs for Learning Margin Halfspaces with
Random Classification Noise [50.64137465792738]
ランダム分類ノイズを用いたPAC$gamma$-marginハーフスペースの問題について検討する。
我々は、問題のサンプル複雑性と計算効率の良いアルゴリズムのサンプル複雑性との間に固有のギャップを示唆する情報計算トレードオフを確立する。
論文 参考訳(メタデータ) (2023-06-28T16:33:39Z) - Sample Complexity Bounds for Robustly Learning Decision Lists against
Evasion Attacks [25.832511407411637]
敵機械学習の根本的な問題は、回避攻撃の存在下でどれだけのトレーニングデータが必要とされるかを定量化することである。
我々は、リプシッツ条件を満たす入力データ上の確率分布を扱う。
すべての固定$k$に対して、$k$-決定リストのクラスは、$log(n)$-bounded adversaryに対してサンプル複雑性を持つ。
論文 参考訳(メタデータ) (2022-05-12T14:40:18Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
高次元におけるリストデコタブル平均推定の基本的な課題について検討する。
我々のアルゴリズムは、すべての$k = O(sqrtd) cup Omega(d)$に対して$widetildeO(ndk)$で実行されます。
我々のアルゴリズムの変種は、すべての$k$に対してランタイム$widetildeO(ndk)$を持ち、リカバリ保証の$O(sqrtlog k)$ Factorを犠牲にしている。
論文 参考訳(メタデータ) (2020-11-19T17:21:37Z) - The Complexity of Adversarially Robust Proper Learning of Halfspaces
with Agnostic Noise [67.27523616312428]
分布非依存型PACモデルにおけるハーフスペースの逆強正則学習の計算複雑性について検討する。
この問題に対して,計算効率のよい学習アルゴリズムとほぼ一致する計算硬度結果を与える。
論文 参考訳(メタデータ) (2020-07-30T04:18:51Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
混合整数計画法(MIP)は、(最適に) $ell_0$-正規化回帰問題を解くために用いられる。
数分で5万ドルの機能を処理できる正確なアルゴリズムと、$papprox6$でインスタンスに対処できる近似アルゴリズムの2つのクラスを提案する。
さらに,$ell$-regularizedsに対する新しい推定誤差境界を提案する。
論文 参考訳(メタデータ) (2020-01-17T18:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。