論文の概要: CGTrack: Cascade Gating Network with Hierarchical Feature Aggregation for UAV Tracking
- arxiv url: http://arxiv.org/abs/2505.05936v1
- Date: Fri, 09 May 2025 10:27:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.230088
- Title: CGTrack: Cascade Gating Network with Hierarchical Feature Aggregation for UAV Tracking
- Title(参考訳): CGTrack:UAV追跡のための階層的な特徴集約を備えたカスケードゲーティングネットワーク
- Authors: Weihong Li, Xiaoqiong Liu, Heng Fan, Libo Zhang,
- Abstract要約: 本稿では,ネットワーク容量を拡大する明示的かつ暗黙的な手法を組み合わせた新しいUAVトラッカーであるCGTrackを紹介する。
3つの挑戦的なUAV追跡ベンチマークの実験は、CGTrackが高速に動作しながら最先端のパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 20.14331144617911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in visual object tracking have markedly improved the capabilities of unmanned aerial vehicle (UAV) tracking, which is a critical component in real-world robotics applications. While the integration of hierarchical lightweight networks has become a prevalent strategy for enhancing efficiency in UAV tracking, it often results in a significant drop in network capacity, which further exacerbates challenges in UAV scenarios, such as frequent occlusions and extreme changes in viewing angles. To address these issues, we introduce a novel family of UAV trackers, termed CGTrack, which combines explicit and implicit techniques to expand network capacity within a coarse-to-fine framework. Specifically, we first introduce a Hierarchical Feature Cascade (HFC) module that leverages the spirit of feature reuse to increase network capacity by integrating the deep semantic cues with the rich spatial information, incurring minimal computational costs while enhancing feature representation. Based on this, we design a novel Lightweight Gated Center Head (LGCH) that utilizes gating mechanisms to decouple target-oriented coordinates from previously expanded features, which contain dense local discriminative information. Extensive experiments on three challenging UAV tracking benchmarks demonstrate that CGTrack achieves state-of-the-art performance while running fast. Code will be available at https://github.com/Nightwatch-Fox11/CGTrack.
- Abstract(参考訳): 視覚的物体追跡の最近の進歩は、現実のロボティクスアプリケーションにおいて重要なコンポーネントである無人航空機追跡(UAV)の機能を大幅に改善した。
階層的な軽量ネットワークの統合は、UAVトラッキングの効率を高めるための一般的な戦略となっているが、しばしばネットワーク容量が大幅に低下し、頻繁な閉塞や視角の極端な変化など、UAVシナリオにおける課題がさらに悪化する。
これらの問題に対処するため、我々はCGTrackと呼ばれる新しいUAVトラッカー群を導入し、粗大なフレームワーク内でネットワーク容量を拡大するための明示的手法と暗黙的手法を組み合わせた。
具体的には,階層型特徴カスケード (HFC) モジュールを最初に導入し,機能再利用の精神を生かして,深い意味的キューと豊かな空間情報を統合することで,特徴表現を高めつつ,最小の計算コストを発生させる。
そこで本研究では,Gating 機構を応用した軽量ゲーテッドセンターヘッド (LGCH) を設計し,より密集した局所的な識別情報を含む,より拡張された特徴から目標指向座標を分離する。
3つの挑戦的なUAV追跡ベンチマークに関する大規模な実験は、CGTrackが高速に動作しながら最先端のパフォーマンスを達成することを示した。
コードはhttps://github.com/Nightwatch-Fox11/CGTrack.comから入手できる。
関連論文リスト
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
本稿では,無人航空機(UAV)映像における多物体追跡の問題に対処する。
交通監視システムや警察によるリアルタイム容疑者追跡など、様々なUAVアプリケーションにおいて重要な役割を果たしている。
低信頼度検出から対象物体の追跡を開始する新しい追跡戦略を提案する。
論文 参考訳(メタデータ) (2024-10-26T05:09:20Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
トレーニング済みのViTバックボーンを使用したシングルストリームアーキテクチャでは、パフォーマンス、効率、堅牢性が改善されている。
リアルタイムなUAV追跡のためにTransformerブロックを動的に終了する適応型フレームワークにすることで、このフレームワークの効率を向上する。
また, 動きのぼかし処理におけるViTsの有効性も改善した。これは, UAV, 追跡対象の速さ, あるいはその両方によって生じるUAVトラッキングの共通問題である。
論文 参考訳(メタデータ) (2024-07-07T14:10:04Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - BEVTrack: A Simple and Strong Baseline for 3D Single Object Tracking in Bird's-Eye View [56.77287041917277]
3Dシングルオブジェクトトラッキング(SOT)はコンピュータビジョンの基本課題であり、自律運転のようなアプリケーションに不可欠なことを証明している。
本稿では,単純で効果的なベースライン手法であるBEVTrackを提案する。
Bird's-Eye View (BEV) における目標運動を推定して追跡を行うことにより、BEVTrackは、ネットワーク設計、トレーニング目標、トラッキングパイプラインなど、様々な側面から驚くほどの単純さを示しながら、優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-09-05T12:42:26Z) - SGDViT: Saliency-Guided Dynamic Vision Transformer for UAV Tracking [12.447854608181833]
本研究は、UAV追跡のための新しいサリエンシ誘導動的視覚変換器(SGDViT)を提案する。
提案手法は,クロスコリレーション操作を洗練させるために,タスク固有の新たなオブジェクト・サリエンシ・マイニング・ネットワークを設計する。
軽量な塩分フィルタリング変換器は、さらに塩分情報を洗練し、外観情報に焦点を当てる。
論文 参考訳(メタデータ) (2023-03-08T05:01:00Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3Dオブジェクトトラッキングは、自律運転など、多くのアプリケーションにおいて重要な役割を果たす。
CXTrackは3次元オブジェクト追跡のためのトランスフォーマーベースのネットワークである。
CXTrackは29FPSで動作しながら最先端のトラッキング性能を実現する。
論文 参考訳(メタデータ) (2022-11-12T11:29:01Z) - Correlation-Aware Deep Tracking [83.51092789908677]
本稿では,自己/横断的意図に着想を得た,新たなターゲット依存型特徴ネットワークを提案する。
我々のネットワークは機能ネットワークの複数の層にクロスイメージの特徴相関を深く埋め込んでいる。
我々のモデルは、豊富な未ペア画像に対して柔軟に事前訓練が可能であり、既存の手法よりも顕著に高速な収束をもたらす。
論文 参考訳(メタデータ) (2022-03-03T11:53:54Z) - COMET: Context-Aware IoU-Guided Network for Small Object Tracking [17.387332692494084]
マルチタスク2ストリームネットワークとオフライン参照提案生成戦略を利用したコンテキスト対応IoU誘導トラッカー(COMET)を提案する。
提案するネットワークは,マルチスケールの特徴学習とアテンションモジュールによるターゲット関連情報を完全に活用する。
経験的に、COMETは、小さなオブジェクトを追跡することに焦点を当てた、さまざまな空中ビューデータセットにおいて、最先端のデータをパフォーマンスします。
論文 参考訳(メタデータ) (2020-06-04T00:28:45Z) - Robust Visual Object Tracking with Two-Stream Residual Convolutional
Networks [62.836429958476735]
視覚追跡のための2ストリーム残差畳み込みネットワーク(TS-RCN)を提案する。
私たちのTS-RCNは、既存のディープラーニングベースのビジュアルトラッカーと統合することができます。
トラッキング性能をさらに向上するため、我々はResNeXtを特徴抽出バックボーンとして採用する。
論文 参考訳(メタデータ) (2020-05-13T19:05:42Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。