UniVLA: Learning to Act Anywhere with Task-centric Latent Actions
- URL: http://arxiv.org/abs/2505.06111v2
- Date: Thu, 15 May 2025 10:31:45 GMT
- Title: UniVLA: Learning to Act Anywhere with Task-centric Latent Actions
- Authors: Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo, Hongyang Li,
- Abstract summary: UniVLA is a new framework for learning cross-embodiment vision-language-action (VLA) policies.<n>We derive task-centric action representations from videos with a latent action model.<n>We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments.
- Score: 32.83715417294052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A generalist robot should perform effectively across various environments. However, most existing approaches heavily rely on scaling action-annotated data to enhance their capabilities. Consequently, they are often limited to single physical specification and struggle to learn transferable knowledge across different embodiments and environments. To confront these limitations, we propose UniVLA, a new framework for learning cross-embodiment vision-language-action (VLA) policies. Our key innovation is to derive task-centric action representations from videos with a latent action model. This enables us to exploit extensive data across a wide spectrum of embodiments and perspectives. To mitigate the effect of task-irrelevant dynamics, we incorporate language instructions and establish a latent action model within the DINO feature space. Learned from internet-scale videos, the generalist policy can be deployed to various robots through efficient latent action decoding. We obtain state-of-the-art results across multiple manipulation and navigation benchmarks, as well as real-robot deployments. UniVLA achieves superior performance over OpenVLA with less than 1/20 of pretraining compute and 1/10 of downstream data. Continuous performance improvements are observed as heterogeneous data, even including human videos, are incorporated into the training pipeline. The results underscore UniVLA's potential to facilitate scalable and efficient robot policy learning.
Related papers
- Unified Vision-Language-Action Model [86.68814779303429]
We present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences.<n>Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge.<n>We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
arXiv Detail & Related papers (2025-06-24T17:59:57Z) - DexVLA: Vision-Language Model with Plug-In Diffusion Expert for General Robot Control [7.626715427413578]
Vision-language-action (VLA) models have shown promise for generalizable robot skills.<n>Current VLA models often focus on scaling the vision-language model (VLM) component, while the action space representation remains a critical bottleneck.<n>This paper introduces DexVLA, a novel framework designed to enhance the efficiency and generalization capabilities ofVLAs for complex, long-horizon tasks.
arXiv Detail & Related papers (2025-02-09T11:25:56Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.<n>We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.<n>We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - Vision Language Models are In-Context Value Learners [89.29486557646624]
We present Generative Value Learning (GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks.
arXiv Detail & Related papers (2024-11-07T09:17:50Z) - Latent Action Pretraining from Videos [156.88613023078778]
We introduce Latent Action Pretraining for general Action models (LAPA)<n>LAPA is an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels.<n>We propose a method to learn from internet-scale videos that do not have robot action labels.
arXiv Detail & Related papers (2024-10-15T16:28:09Z) - TinyVLA: Towards Fast, Data-Efficient Vision-Language-Action Models for Robotic Manipulation [32.406783380729024]
Vision-Language-Action (VLA) models have shown remarkable potential in visuomotor control and instruction comprehension through end-to-end learning processes.<n>Current VLA models face significant challenges: they are slow during inference and require extensive pre-training on large amounts of robotic data.<n>We introduce a new family of compact vision-language-action models, called TinyVLA, which offers two key advantages over existing VLA models.
arXiv Detail & Related papers (2024-09-19T07:10:18Z) - OpenVLA: An Open-Source Vision-Language-Action Model [131.74098076670103]
We introduce OpenVLA, an open-source VLA trained on a diverse collection of 970k real-world robot demonstrations.
OpenVLA shows strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate.
We release model checkpoints, fine-tuning notebooks, and our PyTorch with built-in support for training VLAs at scale on Open X-Embodiment datasets.
arXiv Detail & Related papers (2024-06-13T15:46:55Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.