論文の概要: Realistic Adversarial Attacks for Robustness Evaluation of Trajectory Prediction Models via Future State Perturbation
- arxiv url: http://arxiv.org/abs/2505.06134v1
- Date: Fri, 09 May 2025 15:40:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.319515
- Title: Realistic Adversarial Attacks for Robustness Evaluation of Trajectory Prediction Models via Future State Perturbation
- Title(参考訳): 将来の摂動による軌道予測モデルのロバスト性評価のための現実的逆アタック
- Authors: Julian F. Schumann, Jeroen Hagenus, Frederik Baymler Mathiesen, Arkady Zgonnikov,
- Abstract要約: 軌道予測は自動運転車システムの重要な要素である。
現在のアプローチでは、周囲のエージェントの過去の位置を乱すことに重点を置いている。
本稿では,これらの対向軌道の現実性と影響を評価するための新しい性能指標を提案する。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory prediction is a key element of autonomous vehicle systems, enabling them to anticipate and react to the movements of other road users. Evaluating the robustness of prediction models against adversarial attacks is essential to ensure their reliability in real-world traffic. However, current approaches tend to focus on perturbing the past positions of surrounding agents, which can generate unrealistic scenarios and overlook critical vulnerabilities. This limitation may result in overly optimistic assessments of model performance in real-world conditions. In this work, we demonstrate that perturbing not just past but also future states of adversarial agents can uncover previously undetected weaknesses and thereby provide a more rigorous evaluation of model robustness. Our novel approach incorporates dynamic constraints and preserves tactical behaviors, enabling more effective and realistic adversarial attacks. We introduce new performance measures to assess the realism and impact of these adversarial trajectories. Testing our method on a state-of-the-art prediction model revealed significant increases in prediction errors and collision rates under adversarial conditions. Qualitative analysis further showed that our attacks can expose critical weaknesses, such as the inability of the model to detect potential collisions in what appear to be safe predictions. These results underscore the need for more comprehensive adversarial testing to better evaluate and improve the reliability of trajectory prediction models for autonomous vehicles.
- Abstract(参考訳): 軌道予測は自動運転車システムの重要な要素であり、他の道路利用者の動きを予測し、反応させることができる。
現実の交通の信頼性を確保するためには,敵攻撃に対する予測モデルの堅牢性を評価することが不可欠である。
しかしながら、現在のアプローチでは、非現実的なシナリオを生成し、重大な脆弱性を見落としてしまうような、周辺エージェントの過去の位置を乱すことに重点を置いている。
この制限は、現実世界の条件下でのモデル性能の過度に楽観的な評価をもたらす可能性がある。
本研究では,過去だけでなく将来の敵エージェントの摂動が未検出の弱点を解明し,モデルロバスト性をより厳密に評価できることを実証する。
我々の新しいアプローチは、動的な制約を取り入れ、戦術的行動を保ち、より効果的で現実的な敵攻撃を可能にする。
本稿では,これらの対向軌道の現実性と影響を評価するための新しい性能指標を提案する。
提案手法を最先端予測モデルで検証したところ, 対向条件下での予測誤差と衝突速度が有意に増加した。
定性的分析により、我々の攻撃は、モデルが安全な予測のように見える衝突を検出できないなど、重大な弱点を露呈できることが示された。
これらの結果は、自動運転車の軌道予測モデルの信頼性をよりよく評価し改善するための、より包括的な敵検定の必要性を浮き彫りにしている。
関連論文リスト
- Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
本稿では,軌道予測モデルに対する新たな逆バックドア攻撃を提案する。
我々の攻撃は、自然主義的、従って、新しい2段階のアプローチで作られた毒のサンプルを盗むことによって、訓練時に被害者に影響を及ぼす。
提案手法は,予測モデルの性能を著しく損なうおそれがあり,攻撃効果が高いことを示す。
論文 参考訳(メタデータ) (2023-06-27T19:15:06Z) - Consistent Valid Physically-Realizable Adversarial Attack against
Crowd-flow Prediction Models [4.286570387250455]
ディープラーニング(DL)モデルは、都市全体のクラウドフローパターンを効果的に学習することができる。
DLモデルは、目立たない逆境の摂動に対して不利に作用することが知られている。
論文 参考訳(メタデータ) (2023-03-05T13:30:25Z) - Benchmark for Models Predicting Human Behavior in Gap Acceptance
Scenarios [4.801975818473341]
我々は、どんなモデルでも、どんなメトリクスでも、どんなシナリオでも、容易に評価できるフレームワークを開発します。
次に、このフレームワークを最先端の予測モデルに適用する。
論文 参考訳(メタデータ) (2022-11-10T09:59:38Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Semi-supervised Semantics-guided Adversarial Training for Trajectory
Prediction [15.707419899141698]
軌道予測に対する敵対的な攻撃は、将来の軌道予測を誤解させ、安全でない計画を引き起こす可能性がある。
本稿では,軌道予測のための新しい逆学習法を提案する。
本手法は、敵攻撃の影響を最大73%軽減し、他の一般的な防御方法より優れる。
論文 参考訳(メタデータ) (2022-05-27T20:50:36Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
本稿では,エージェントのクラス確率を明示的に組み込んだヘテロジニアスエージェント軌道予測手法であるHAICUを提案する。
さらに,新たな挑戦的な実世界の自動運転データセットであるpupも紹介する。
軌道予測にクラス確率を組み込むことで,不確実性に直面した性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-04-26T10:28:34Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。