論文の概要: Brain Hematoma Marker Recognition Using Multitask Learning: SwinTransformer and Swin-Unet
- arxiv url: http://arxiv.org/abs/2505.06185v1
- Date: Fri, 09 May 2025 16:54:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.347859
- Title: Brain Hematoma Marker Recognition Using Multitask Learning: SwinTransformer and Swin-Unet
- Title(参考訳): マルチタスク学習を用いた脳血腫マーカー認識 : Swin Transformer と Swin-Unet
- Authors: Kodai Hirata, Tsuyoshi Okita,
- Abstract要約: 本稿では,分類とセマンティックセグメンテーションのためのトランスフォーマを用いたマルチタスク学習手法 MTL-Swin-Unet を提案する。
この手法により,他の2つの画像表現を用いた画像表現の高速化が可能となる。
- 参考スコア(独自算出の注目度): 3.5938832647391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a method MTL-Swin-Unet which is multi-task learning using transformers for classification and semantic segmentation. For spurious-correlation problems, this method allows us to enhance the image representation with two other image representations: representation obtained by semantic segmentation and representation obtained by image reconstruction. In our experiments, the proposed method outperformed in F-value measure than other classifiers when the test data included slices from the same patient (no covariate shift). Similarly, when the test data did not include slices from the same patient (covariate shift setting), the proposed method outperformed in AUC measure.
- Abstract(参考訳): 本稿では,分類とセマンティックセグメンテーションのためのトランスフォーマを用いたマルチタスク学習手法 MTL-Swin-Unet を提案する。
この方法では,意味的セグメンテーションと画像再構成による表現という,他の2つの画像表現を用いて画像表現を強化することができる。
実験では,同一患者のスライスを含む試験データ(共変量シフトなし)において,F値測定において他の分類器よりも優れていた。
同様に、同一患者のスライス(変量シフト設定)を検査データに含まない場合、提案手法はAUC法よりも優れていた。
関連論文リスト
- FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
本稿では,セグメンテーションマスクの暗黙分布を表現するために,画像誘導型条件付きフローマッチングフレームワークであるFlowSDFを紹介する。
本フレームワークは,セグメンテーションマスクの正確なサンプリングと関連する統計指標の計算を可能にする。
論文 参考訳(メタデータ) (2024-05-28T11:47:12Z) - Intra-video Positive Pairs in Self-Supervised Learning for Ultrasound [65.23740556896654]
自己教師付き学習 (SSL) は, 医療画像におけるラベル付きデータの健全性に対処するための戦略である。
本研究では,同じBモード超音波映像をSSLのペアとして用いた近位画像の利用効果について検討した。
この手法は、従来の超音波特異的比較学習法の平均検査精度を新型コロナウイルスの分類で上回り、IVPP(Intra-Video Positive Pairs)と命名された。
論文 参考訳(メタデータ) (2024-03-12T14:57:57Z) - LeOCLR: Leveraging Original Images for Contrastive Learning of Visual Representations [4.680881326162484]
画像分類やオブジェクト検出などの下流タスクにおける教師あり学習よりも優れている。
対照的な学習における一般的な強化手法は、ランダムな収穫とそれに続くリサイズである。
本稿では,新しいインスタンス識別手法と適応型損失関数を用いたフレームワークであるLeOCLRを紹介する。
論文 参考訳(メタデータ) (2024-03-11T15:33:32Z) - Additional Positive Enables Better Representation Learning for Medical
Images [17.787804928943057]
本稿では,SOTA(State-of-the-art)自己教師型学習フレームワークであるBYOLに対して,新たな肯定的なペアを特定する方法を提案する。
各画像に対して、他の画像から最も類似したサンプルを付加陽性として選択し、BYOL損失とともに特徴を引き出す。
2つの公開医療データセットの実験結果から,提案手法が分類性能を向上させることを示す。
論文 参考訳(メタデータ) (2023-05-31T18:37:02Z) - A Test Statistic Estimation-based Approach for Establishing
Self-interpretable CNN-based Binary Classifiers [7.424003880270276]
ポストホック解釈可能性法は、可算だが異なる解釈を生成できるという限界がある。
提案手法は自己解釈可能で定量的であり,従来のポストホック・インタプリタビリティ法とは異なり,自己解釈可能で定量的である。
論文 参考訳(メタデータ) (2023-03-13T05:51:35Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Contrast Adaptive Tissue Classification by Alternating Segmentation and
Synthesis [0.21111026813272174]
本稿では,訓練データのコントラスト特性を入力画像に適応する交互セグメンテーションと合成ステップを用いたアプローチについて述べる。
このアプローチの顕著な利点は、そのコントラスト特性に適応するために取得プロトコルの1つの例だけが必要であることである。
論文 参考訳(メタデータ) (2021-03-04T00:25:24Z) - Seed the Views: Hierarchical Semantic Alignment for Contrastive
Representation Learning [116.91819311885166]
一つの画像から生成されたビューをtextbfCross-samples や Multi-level representation に拡張することで,階層的なセマンティックアライメント戦略を提案する。
提案手法はCsMlと呼ばれ,サンプル間の多層視覚表現を堅牢な方法で統合する機能を備えている。
論文 参考訳(メタデータ) (2020-12-04T17:26:24Z) - Support-set bottlenecks for video-text representation learning [131.4161071785107]
ビデオテキスト表現(ノイズコントラスト学習)を学ぶための支配的なパラダイムは厳しすぎる。
本稿では,これらのサンプルを自然に押下する生成モデルを活用することによって,これを緩和する手法を提案する。
提案手法は,MSR-VTT,VATEX,ActivityNet,MSVDにおいて,ビデオ・テキスト・テキスト・ビデオ検索やテキスト・トゥ・ビデオ検索において,他よりも優れていた。
論文 参考訳(メタデータ) (2020-10-06T15:38:54Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。