論文の概要: Adapting a Segmentation Foundation Model for Medical Image Classification
- arxiv url: http://arxiv.org/abs/2505.06217v1
- Date: Fri, 09 May 2025 17:51:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.357112
- Title: Adapting a Segmentation Foundation Model for Medical Image Classification
- Title(参考訳): 医用画像分類のためのセグメンテーション基礎モデルの適用
- Authors: Pengfei Gu, Haoteng Tang, Islam A. Ebeid, Jose A. Nunez, Fabian Vazquez, Diego Adame, Marcus Zhan, Huimin Li, Bin Fu, Danny Z. Chen,
- Abstract要約: 医療画像分類のためのSegment Anything Model (SAM) を適用するための新しいフレームワークを提案する。
まず、SAM画像エンコーダを特徴抽出器として利用し、セグメント化に基づく特徴量をキャプチャする。
次に,特徴写像に対する空間的局所的な注意重みを計算するための,空間的局所化チャネル注意(SLCA)機構を提案する。
- 参考スコア(独自算出の注目度): 13.711279542090043
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in foundation models, such as the Segment Anything Model (SAM), have shown strong performance in various vision tasks, particularly image segmentation, due to their impressive zero-shot segmentation capabilities. However, effectively adapting such models for medical image classification is still a less explored topic. In this paper, we introduce a new framework to adapt SAM for medical image classification. First, we utilize the SAM image encoder as a feature extractor to capture segmentation-based features that convey important spatial and contextual details of the image, while freezing its weights to avoid unnecessary overhead during training. Next, we propose a novel Spatially Localized Channel Attention (SLCA) mechanism to compute spatially localized attention weights for the feature maps. The features extracted from SAM's image encoder are processed through SLCA to compute attention weights, which are then integrated into deep learning classification models to enhance their focus on spatially relevant or meaningful regions of the image, thus improving classification performance. Experimental results on three public medical image classification datasets demonstrate the effectiveness and data-efficiency of our approach.
- Abstract(参考訳): SAM(Segment Anything Model)のような基礎モデルの最近の進歩は、様々な視覚タスク、特に画像セグメンテーションにおいて、その印象的なゼロショットセグメンテーション能力により、強力な性能を示している。
しかし、そのようなモデルを医用画像分類に効果的に適用することは、いまだ研究されていないトピックである。
本稿では,SAMを医用画像分類に適用するための新しい枠組みを提案する。
まず、SAM画像エンコーダを特徴抽出器として利用し、画像の重要な空間的・文脈的詳細を伝達するセグメンテーションに基づく特徴を捉えながら、トレーニング中に不要なオーバーヘッドを避けるために、その重みを凍結する。
次に,特徴写像に対する空間的局所的な注意重みを計算するための,空間的局所化チャネル注意(SLCA)機構を提案する。
SAMの画像エンコーダから抽出した特徴をSLCAで処理し、注意重みを計算し、深層学習分類モデルに統合し、画像の空間的関連性や意味のある領域へのフォーカスを高め、分類性能を向上させる。
3つの公開医用画像分類データセットの実験結果から,本手法の有効性と有効性が確認された。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - MedFocusCLIP : Improving few shot classification in medical datasets using pixel wise attention [1.2277343096128712]
本稿では,CLIP(Contrastive Language- Image Pretraining)における視覚的エンコーダを支援する視覚的プロンプトキューとして,Segment Anything Model 2(SAM2)の高度なセグメンテーション機能を活用することを提案する。
これにより、視覚的に類似したバックグラウンド機能に気を散らすことなく、非常に差別的な領域に集中することができる。
提案手法は,X線,CTスキャン,MRI画像など多種多様な医療データセットを用いて評価し,提案手法の精度(71%,81%,86%,58%)を報告する。
論文 参考訳(メタデータ) (2025-01-07T14:49:12Z) - Boosting Medical Image Classification with Segmentation Foundation Model [19.41887842350247]
Segment Anything Model (SAM)は、自然画像のゼロショットセグメンテーションにおいて印象的な機能を示す。
SAMのパワーを医療画像分類に活用する方法を示す研究はない。
そこで本研究では,SAMをベースとした斬新な拡張手法であるSAMAug-Cについて紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:54:49Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
医用画像セグメンテーションは、ディープニューラルネットワークを用いて、胸部X線写真などの医用画像の異常な構造を特定し、発見することを目的としている。
我々の研究は、よく訓練された分類器から説明を集め、セグメンテーションタスクの擬似ラベルを生成する。
次に、インテグレート・グラディエント(IG)法を用いて、分類器から得られた説明を蒸留し、強化し、大規模診断指向のローカライゼーション・ラベル(DoLL)を生成する。
これらのDLLアノテーション付き画像は、新型コロナウイルス感染症、肺、心臓、鎖骨などの下流のセグメンテーションタスクのために、モデルを微調整する前に事前訓練するために使用される。
論文 参考訳(メタデータ) (2024-01-16T16:18:42Z) - nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance [12.169801149021566]
Segment Anything Model (SAM)は、特定のドメイントレーニングなしで画像セグメンテーションのための汎用ツールとして登場した。
nnUNetのような従来のモデルは推論中に自動セグメンテーションを実行するが、広範なドメイン固有のトレーニングが必要である。
提案するnnSAMは,SAMの頑健な特徴抽出とnnUNetの自動構成を統合し,小さなデータセットのセグメンテーション精度を向上させる。
論文 参考訳(メタデータ) (2023-09-29T04:26:25Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
オブジェクト検出やセマンティックセグメンテーションといった、より広範な視覚問題に対して、ゼロショット認識をどのようにうまく機能させるかは定かではない。
本稿では,既訓練の視覚言語モデルであるCLIPを用いて,ゼロショットセマンティックセマンティックセマンティックセマンティクスを構築することを目的とした。
実験結果から, この単純なフレームワークは, 従来の最先端をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-12-29T18:56:18Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMENはマルチブランチ方式で、画素ワイドアテンションモデルとサブモジュールの分類で定式化される。
微妙な詳細情報に焦点を合わせるため、サンプル画像は、前枝から生成された画素対応の注目マップによって強化される。
3つのベンチマークデータセットで行った実験は、様々なシナリオにおいて提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2020-10-07T08:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。