論文の概要: Cluster-Aware Multi-Round Update for Wireless Federated Learning in Heterogeneous Environments
- arxiv url: http://arxiv.org/abs/2505.06268v1
- Date: Tue, 06 May 2025 02:48:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.721781
- Title: Cluster-Aware Multi-Round Update for Wireless Federated Learning in Heterogeneous Environments
- Title(参考訳): 不均一環境における無線フェデレーション学習のためのクラスタ対応マルチトラック更新
- Authors: Pengcheng Sun, Erwu Liu, Wei Ni, Kanglei Yu, Rui Wang, Abbas Jamalipour,
- Abstract要約: 本稿では、類似したデータと通信特性を持つグループデバイスとの事前知識の類似性を活用するクラスタリング戦略を提案する。
クラスタを基本単位として扱い、クラスタ化されたコントリビューションしきい値に基づいてローカル更新頻度を調整する新しいクラスタ・アウェア・マルチラウンド・アップデート(CAMU)戦略を提案する。
- 参考スコア(独自算出の注目度): 25.405210975577834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aggregation efficiency and accuracy of wireless Federated Learning (FL) are significantly affected by resource constraints, especially in heterogeneous environments where devices exhibit distinct data distributions and communication capabilities. This paper proposes a clustering strategy that leverages prior knowledge similarity to group devices with similar data and communication characteristics, mitigating performance degradation from heterogeneity. On this basis, a novel Cluster- Aware Multi-round Update (CAMU) strategy is proposed, which treats clusters as the basic units and adjusts the local update frequency based on the clustered contribution threshold, effectively reducing update bias and enhancing aggregation accuracy. The theoretical convergence of the CAMU strategy is rigorously validated. Meanwhile, based on the convergence upper bound, the local update frequency and transmission power of each cluster are jointly optimized to achieve an optimal balance between computation and communication resources under constrained conditions, significantly improving the convergence efficiency of FL. Experimental results demonstrate that the proposed method effectively improves the model performance of FL in heterogeneous environments and achieves a better balance between communication cost and computational load under limited resources.
- Abstract(参考訳): 無線フェデレート学習(FL)の集約効率と精度は、特にデバイスが異なるデータ分散と通信能力を示す異種環境において、リソース制約に大きく影響を受ける。
本稿では、類似したデータと通信特性を持つグループデバイスとの事前知識の類似性を生かし、不均一性による性能劣化を緩和するクラスタリング戦略を提案する。
クラスタを基本単位として扱い、クラスタ化されたコントリビューション閾値に基づいて局所的な更新頻度を調整し、更新バイアスを効果的に低減し、アグリゲーション精度を向上する新しいクラスタ・アウェア・マルチラウンド・アップデート(CAMU)戦略を提案する。
CAMU戦略の理論的収束は厳格に検証されている。
一方、収束上限に基づいて各クラスタの局所更新周波数と送信電力を共同最適化し、制約条件下での計算資源と通信資源の最適バランスを達成し、FLの収束効率を著しく向上させる。
実験により,提案手法は異種環境におけるFLのモデル性能を効果的に向上し,限られた資源下での通信コストと計算負荷とのバランスを良くすることを示した。
関連論文リスト
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL)は、6G Hyper-Connectivityのための分散機械学習パラダイムのパイオニアとして登場した。
現在のFEELアルゴリズムは、非独立かつ非独立に分散した(非IID)データと競合し、通信コストの上昇とモデルの精度が損なわれる。
我々はクラスタ化データ共有フレームワークを導入し、クラスタヘッドから信頼されたアソシエイトに部分的なデータを選択的に共有することで、データの均一性を緩和する。
実験により, このフレームワークは, 限られた通信環境において, 収束速度が速く, モデル精度が高い非IIDデータセット上で FEEL を促進することを示した。
論文 参考訳(メタデータ) (2024-06-14T07:22:39Z) - Dual-Segment Clustering Strategy for Hierarchical Federated Learning in Heterogeneous Wireless Environments [22.35256018841889]
非独立かつ同一分布(ノンID)データは、フェデレートラーニング(FL)に悪影響を及ぼす
本稿では,FLにおける通信とデータの不均一性を両立する新たなデュアルセグメンテーションクラスタリング(DSC)戦略を提案する。
収束解析と実験結果から,DSC戦略は無線FLの収束率を向上させることができることが示された。
論文 参考訳(メタデータ) (2024-05-15T11:46:47Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning(FL)は、デバイス上でのトレーニングとサーバベースのアグリゲーションを組み合わせた、協調的な機械学習フレームワークである。
FLシステムにおけるストラグラー問題に対処するために,周期的アグリゲーションを用いた非同期FL設計を提案する。
年齢認識の集約重み付け設計は,非同期FL設定における学習性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-14T17:33:01Z) - Communication-Efficient Consensus Mechanism for Federated Reinforcement
Learning [20.891460617583302]
FLは、トレーニング効率と安定性の観点から、IRLのポリシー性能を向上させることができることを示す。
本稿では,モデル収束性能の向上と,必要な通信や計算オーバーヘッドの低減のバランスをとるために,システムユーティリティ関数を提案する。
論文 参考訳(メタデータ) (2022-01-30T04:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。