A machine learning model for skillful climate system prediction
- URL: http://arxiv.org/abs/2505.06269v1
- Date: Tue, 06 May 2025 03:06:14 GMT
- Title: A machine learning model for skillful climate system prediction
- Authors: Chenguang Zhou, Lei Chen, Xiaohui Zhong, Bo Lu, Hao Li, Libo Wu, Jie Wu, Jiahui Hu, Zesheng Dou, Pang-Chi Hsu, Xiaoye Zhang,
- Abstract summary: This paper introduces FengShun-CSM, an AI-based climate system model that provides 60-day global daily forecasts for 29 critical variables.<n>The model significantly outperforms the European Centre for Medium-Range Weather Forecasts (ECMWF) subseasonal-to-seasonal (S2S) model in predicting most variables.<n>Remarkably, FengShun-CSM exhibits substantial potential in predicting subseasonal extreme events.
- Score: 12.912679599908984
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Climate system models (CSMs), through integrating cross-sphere interactions among the atmosphere, ocean, land, and cryosphere, have emerged as pivotal tools for deciphering climate dynamics and improving forecasting capabilities. Recent breakthroughs in artificial intelligence (AI)-driven meteorological modeling have demonstrated remarkable success in single-sphere systems and partially spheres coupled systems. However, the development of a fully coupled AI-based climate system model encompassing atmosphere-ocean-land-sea ice interactions has remained an unresolved challenge. This paper introduces FengShun-CSM, an AI-based CSM model that provides 60-day global daily forecasts for 29 critical variables across atmospheric, oceanic, terrestrial, and cryospheric domains. The model significantly outperforms the European Centre for Medium-Range Weather Forecasts (ECMWF) subseasonal-to-seasonal (S2S) model in predicting most variables, particularly precipitation, land surface, and oceanic components. This enhanced capability is primarily attributed to its improved representation of intra-seasonal variability modes, most notably the Madden-Julian Oscillation (MJO). Remarkably, FengShun-CSM exhibits substantial potential in predicting subseasonal extreme events. Such breakthroughs will advance its applications in meteorological disaster mitigation, marine ecosystem conservation, and agricultural productivity enhancement. Furthermore, it validates the feasibility of developing AI-powered CSMs through machine learning technologies, establishing a transformative paradigm for next-generation Earth system modeling.
Related papers
- Physics-Informed Teleconnection-Aware Transformer for Global Subseasonal-to-Seasonal Forecasting [9.604302577187788]
Subseasonal-to-seasonal (S2S) forecasting presents significant challenges due to chaotic dynamics of atmospheric systems.<n>We introduce TelePiT, a novel deep learning architecture that enhances global S2S forecasting through integrated multi-scale physics and teleconnection awareness.
arXiv Detail & Related papers (2025-06-08T16:32:21Z) - Seasonal Prediction with Neural GCM and Simplified Boundary Forcings: Large-scale Atmospheric Variability and Tropical Cyclone Activity [2.5701544858386396]
Machine learning models are successful with weather forecasting and have shown progress in climate simulations, yet leveraging them for useful climate predictions needs exploration.<n>Here we show this feasibility using NeuralGCM, a hybrid ML-physics atmospheric model, for seasonal predictions of large-scale atmospheric variability and Northern Hemisphere tropical cyclone (TC) activity.<n> Notably, the prediction skill for TC frequency in the North Atlantic and East Pacific basins is comparable to existing physical models.
arXiv Detail & Related papers (2025-04-30T19:42:16Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Probabilistic Emulation of a Global Climate Model with Spherical DYffusion [15.460280166612119]
We present the first conditional generative model that produces accurate and physically consistent global climate ensemble simulations.
Our model integrates the dynamics-informed diffusion framework (DYffusion) with the Spherical Fourier Neural Operator (SFNO) architecture.
The model achieves near gold-standard performance for climate model emulation, outperforming existing approaches and demonstrating promising ensemble skill.
arXiv Detail & Related papers (2024-06-21T00:16:55Z) - Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model [0.6008008212472723]
We present the Ocean-linked-atmosphere (Ola) model, a high-resolution (0.25deg) Artificial Intelligence/ Machine Learning (AI/ML) coupled earth-system model.
We find that Ola exhibits learned characteristics of ocean-atmosphere coupled dynamics including tropical oceanic waves with appropriate phase speeds.
We present initial evidence of skill in forecasting the El Nino/Southern Oscillation (ENSO) which compares favorably to the SPEAR model of the Geophysical Fluid Dynamics Laboratory.
arXiv Detail & Related papers (2024-06-12T20:29:14Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Reservoir Computing as a Tool for Climate Predictability Studies [0.0]
We show that Reservoir Computing provides an alternative nonlinear approach that improves on the predictive skill of the Linear-Inverse-Modeling approach.
The improved predictive skill of the RC approach over a wide range of conditions suggests that this machine-learning technique may have a use in climate predictability studies.
arXiv Detail & Related papers (2021-02-24T22:22:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.