Physics-Informed Teleconnection-Aware Transformer for Global Subseasonal-to-Seasonal Forecasting
- URL: http://arxiv.org/abs/2506.08049v2
- Date: Wed, 11 Jun 2025 10:52:56 GMT
- Title: Physics-Informed Teleconnection-Aware Transformer for Global Subseasonal-to-Seasonal Forecasting
- Authors: Tengfei Lyu, Weijia Zhang, Hao Liu,
- Abstract summary: Subseasonal-to-seasonal (S2S) forecasting presents significant challenges due to chaotic dynamics of atmospheric systems.<n>We introduce TelePiT, a novel deep learning architecture that enhances global S2S forecasting through integrated multi-scale physics and teleconnection awareness.
- Score: 9.604302577187788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subseasonal-to-seasonal (S2S) forecasting, which predicts climate conditions from several weeks to months in advance, presents significant challenges due to the chaotic dynamics of atmospheric systems and complex interactions across multiple scales. Current approaches often fail to explicitly model underlying physical processes and teleconnections that are crucial at S2S timescales. We introduce TelePiT, a novel deep learning architecture that enhances global S2S forecasting through integrated multi-scale physics and teleconnection awareness. Our approach consists of three key components: (1) Spherical Harmonic Embedding, which accurately encodes global atmospheric variables onto spherical geometry; (2) Multi-Scale Physics-Informed Neural ODE, which explicitly captures atmospheric physical processes across multiple learnable frequency bands; (3) Teleconnection-Aware Transformer, which models critical global climate interactions through tactfully injecting teleconnection patterns into the self-attention. Extensive experiments demonstrate that TelePiT significantly outperforms state-of-the-art data-driven baselines and operational numerical weather prediction systems, with remarkable improvements for atmospheric variables including a 57.7% reduction in RMSE for 2-meter temperature compared to previous best models.
Related papers
- A machine learning model for skillful climate system prediction [12.912679599908984]
This paper introduces FengShun-CSM, an AI-based climate system model that provides 60-day global daily forecasts for 29 critical variables.<n>The model significantly outperforms the European Centre for Medium-Range Weather Forecasts (ECMWF) subseasonal-to-seasonal (S2S) model in predicting most variables.<n>Remarkably, FengShun-CSM exhibits substantial potential in predicting subseasonal extreme events.
arXiv Detail & Related papers (2025-05-06T03:06:14Z) - A Physics-guided Multimodal Transformer Path to Weather and Climate Sciences [59.05404971880922]
Many problems in meteorology can now be addressed using AI models.<n>Data-driven algorithms have significantly improved accuracy compared to traditional methods.<n>We propose a new paradigm where observational data from different perspectives are treated as multimodal data and integrated via transformers.
arXiv Detail & Related papers (2025-04-19T04:31:35Z) - CirT: Global Subseasonal-to-Seasonal Forecasting with Geometry-inspired Transformer [47.65152457550307]
We propose the geometric-inspired Circular Transformer (CirT) to model the cyclic characteristic of the graticule.<n>Experiments on the Earth Reanalysis 5 (ERA5) reanalysis dataset demonstrate our model yields a significant improvement over the advanced data-driven models.
arXiv Detail & Related papers (2025-02-27T04:26:23Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which generalizes weather forecasts to finer-grained temporal scales beyond training dataset.<n>Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.<n>We also introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - MetaSD: A Unified Framework for Scalable Downscaling of Meteorological Variables in Diverse Situations [8.71735078449217]
This paper proposes a unified downscaling approach leveraging meta-learning.
We trained variables consisted of temperature, wind, surface pressure and total precipitation from ERA5 and GFS.
The proposed method can be extended to downscale convective precipitation, potential, energy height, humidity CFS, S2S and CMIP6 at differenttemporal scales.
arXiv Detail & Related papers (2024-04-26T06:31:44Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
We present ClimODE, a continuous-time process that implements key principle of statistical mechanics.
ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow.
Our approach outperforms existing data-driven methods in global, regional forecasting with an order of magnitude smaller parameterization.
arXiv Detail & Related papers (2024-04-15T06:38:21Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Deep Learning based Extreme Heatwave Forecast [8.975667614727648]
Using 1000 years of state-of-the-art PlaSim Planete Simulator Climate Model data, it is shown that Convolutional Neural Network-based Deep Learning frameworks, with large-class undersampling and transfer learning achieve significant performance in forecasting the occurrence of extreme heatwaves.
arXiv Detail & Related papers (2021-03-17T16:10:06Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.