Interpretable Learning Dynamics in Unsupervised Reinforcement Learning
- URL: http://arxiv.org/abs/2505.06279v1
- Date: Tue, 06 May 2025 19:57:09 GMT
- Title: Interpretable Learning Dynamics in Unsupervised Reinforcement Learning
- Authors: Shashwat Pandey,
- Abstract summary: We present an interpretability framework for unsupervised reinforcement learning (URL) agents.<n>We analyze five agents DQN, RND, ICM, PPO, and a Transformer-RND variant trained on procedurally generated environments.
- Score: 0.10832949790701804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an interpretability framework for unsupervised reinforcement learning (URL) agents, aimed at understanding how intrinsic motivation shapes attention, behavior, and representation learning. We analyze five agents DQN, RND, ICM, PPO, and a Transformer-RND variant trained on procedurally generated environments, using Grad-CAM, Layer-wise Relevance Propagation (LRP), exploration metrics, and latent space clustering. To capture how agents perceive and adapt over time, we introduce two metrics: attention diversity, which measures the spatial breadth of focus, and attention change rate, which quantifies temporal shifts in attention. Our findings show that curiosity-driven agents display broader, more dynamic attention and exploratory behavior than their extrinsically motivated counterparts. Among them, TransformerRND combines wide attention, high exploration coverage, and compact, structured latent representations. Our results highlight the influence of architectural inductive biases and training signals on internal agent dynamics. Beyond reward-centric evaluation, the proposed framework offers diagnostic tools to probe perception and abstraction in RL agents, enabling more interpretable and generalizable behavior.
Related papers
- Mechanistic Interpretability of Reinforcement Learning Agents [0.0]
This paper explores the mechanistic interpretability of reinforcement learning (RL) agents through an analysis of a neural network trained on procedural maze environments.
By dissecting the network's inner workings, we identified fundamental features like maze walls and pathways, forming the basis of the model's decision-making process.
arXiv Detail & Related papers (2024-10-30T21:02:50Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - DEAR: Disentangled Environment and Agent Representations for Reinforcement Learning without Reconstruction [4.813546138483559]
Reinforcement Learning (RL) algorithms can learn robotic control tasks from visual observations, but they often require a large amount of data.
In this paper, we explore how the agent's knowledge of its shape can improve the sample efficiency of visual RL methods.
We propose a novel method, Disentangled Environment and Agent Representations, that uses the segmentation mask of the agent as supervision.
arXiv Detail & Related papers (2024-06-30T09:15:21Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Generalization Across Observation Shifts in Reinforcement Learning [13.136140831757189]
We extend the bisimulation framework to account for context dependent observation shifts.
Specifically, we focus on the simulator based learning setting and use alternate observations to learn a representation space.
This allows us to deploy the agent to varying observation settings during test time and generalize to unseen scenarios.
arXiv Detail & Related papers (2023-06-07T16:49:03Z) - Generalization in Visual Reinforcement Learning with the Reward Sequence
Distribution [98.67737684075587]
Generalization in partially observed markov decision processes (POMDPs) is critical for successful applications of visual reinforcement learning (VRL)
We propose the reward sequence distribution conditioned on the starting observation and the predefined subsequent action sequence (RSD-OA)
Experiments demonstrate that our representation learning approach based on RSD-OA significantly improves the generalization performance on unseen environments.
arXiv Detail & Related papers (2023-02-19T15:47:24Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains.
Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or models, and can be trained using entirely offline observational data.
arXiv Detail & Related papers (2022-06-17T23:07:33Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
We argue that a compact and general learning objective is to minimize the entropy of the agent's state visitation estimated using a latent state-space model.
This objective induces an agent to both gather information about its environment, corresponding to reducing uncertainty, and to gain control over its environment, corresponding to reducing the unpredictability of future world states.
arXiv Detail & Related papers (2021-12-07T18:50:42Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - On the Sensory Commutativity of Action Sequences for Embodied Agents [2.320417845168326]
We study perception for embodied agents under the mathematical formalism of group theory.
We introduce the Sensory Commutativity Probability criterion which measures how much an agent's degree of freedom affects the environment.
We empirically illustrate how SCP and the commutative properties of action sequences can be used to learn about objects in the environment.
arXiv Detail & Related papers (2020-02-13T16:58:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.