論文の概要: Safety Analysis in the NGAC Model
- arxiv url: http://arxiv.org/abs/2505.06406v1
- Date: Fri, 09 May 2025 20:07:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 16:45:08.886374
- Title: Safety Analysis in the NGAC Model
- Title(参考訳): NGACモデルにおける安全性解析
- Authors: Brian Tan, Ewan S. D. Davies, Indrakshi Ray, Mahmoud A. Abdelgawad,
- Abstract要約: 軽微な仮定ではcoNP完全であり、さらに現実的な仮定では安全性問題に対するアルゴリズムがネーブ・ブルート力探索を著しく上回ることを示す。
また,実世界の相互排他的属性の例が,アルゴリズムの最悪の動作につながることを示す。
- 参考スコア(独自算出の注目度): 1.9106435311144372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the safety problem for the next-generation access control (NGAC) model. We show that under mild assumptions it is coNP-complete, and under further realistic assumptions we give an algorithm for the safety problem that significantly outperforms naive brute force search. We also show that real-world examples of mutually exclusive attributes lead to nearly worst-case behavior of our algorithm.
- Abstract(参考訳): 次世代アクセス制御モデル(NGAC)の安全性問題について検討する。
軽微な仮定ではcoNP完全であり、さらに現実的な仮定では安全性問題に対するアルゴリズムがネーブ・ブルート力探索を著しく上回ることを示す。
また,実世界の相互排他的属性の例が,アルゴリズムの最悪の動作につながることを示す。
関連論文リスト
- Advancing Neural Network Verification through Hierarchical Safety Abstract Interpretation [52.626086874715284]
我々は、安全でない出力の階層構造を検証する抽象的DNN検証と呼ばれる新しい問題定式化を導入する。
出力到達可能な集合に関する抽象的解釈と推論を活用することにより,形式的検証プロセスにおいて,複数の安全性レベルを評価することができる。
我々の貢献には、新しい抽象的安全性の定式化と既存のアプローチとの関係を理論的に探求することが含まれる。
論文 参考訳(メタデータ) (2025-05-08T13:29:46Z) - SCPO: Safe Reinforcement Learning with Safety Critic Policy Optimization [1.3597551064547502]
本研究では,新しい安全強化学習アルゴリズム,セーフティ・クリティカル・ポリシー・オプティマイゼーションを導入する。
本研究では,安全制約に違反して得られる報酬を無効化する機構である安全評論家を定義した。
理論的解析により,提案アルゴリズムは安全制約への付着と報酬の最大化との間のトレードオフを自動的にバランスできることが示された。
論文 参考訳(メタデータ) (2023-11-01T22:12:50Z) - Safe Exploration in Reinforcement Learning: A Generalized Formulation
and Algorithms [8.789204441461678]
本稿では,安全な探査のためのメタアルゴリズムであるMASEの形で,安全な探査(GSE)問題の解を提案する。
提案アルゴリズムは,グリッドワールドおよびセーフティガイムベンチマークにおける最先端アルゴリズムよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2023-10-05T00:47:09Z) - Approximate Shielding of Atari Agents for Safe Exploration [83.55437924143615]
遮蔽の概念に基づく安全な探索のための原理的アルゴリズムを提案する。
本稿では,我々の近似遮蔽アルゴリズムが安全違反率を効果的に低減することを示す予備的な結果を示す。
論文 参考訳(メタデータ) (2023-04-21T16:19:54Z) - Benefits of Monotonicity in Safe Exploration with Gaussian Processes [50.71125084216603]
動作の集合上で未知の関数を逐次最大化する問題を考察する。
M-SafeUCBは、安全性、適切に定義された後悔の念、安全境界全体の発見という理論的な保証を享受していることを示す。
論文 参考訳(メタデータ) (2022-11-03T02:52:30Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
強化学習(RL)のための様々なアルゴリズムは、その収束率の劇的な変動を問題構造の関数として示している。
この研究は、観察されたパフォーマンスの違いについて、textitexを説明する保証を提供する。
次の自然なステップは、これらの理論的保証を実際に有用なガイドラインに変換することです。
論文 参考訳(メタデータ) (2022-01-21T04:25:35Z) - Verifiably Safe Exploration for End-to-End Reinforcement Learning [17.401496872603943]
本稿では,視覚的入力によるエンドツーエンドポリシーの形式的安全性制約の実施に向けた最初のアプローチを提案する。
厳密な制約の存在下で安全に探索することの難しさを強調する新しいベンチマークで評価されている。
論文 参考訳(メタデータ) (2020-07-02T16:12:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。