論文の概要: Multimodal Safety-Critical Scenarios Generation for Decision-Making
Algorithms Evaluation
- arxiv url: http://arxiv.org/abs/2009.08311v3
- Date: Sat, 26 Dec 2020 16:54:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 23:47:22.299039
- Title: Multimodal Safety-Critical Scenarios Generation for Decision-Making
Algorithms Evaluation
- Title(参考訳): 意思決定アルゴリズム評価のためのマルチモーダル安全批判シナリオ生成
- Authors: Wenhao Ding, Baiming Chen, Bo Li, Kim Ji Eun, Ding Zhao
- Abstract要約: 既存のニューラルネットワークベースの自律システムは、敵の攻撃に対して脆弱であることが示されている。
意思決定アルゴリズムの評価のためのフローベースマルチモーダル安全クリティカルシナリオジェネレータを提案する。
生成したトラフィックシナリオを用いて6つの強化学習アルゴリズムを評価し,その堅牢性に関する実証的な結論を提供する。
- 参考スコア(独自算出の注目度): 23.43175124406634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing neural network-based autonomous systems are shown to be vulnerable
against adversarial attacks, therefore sophisticated evaluation on their
robustness is of great importance. However, evaluating the robustness only
under the worst-case scenarios based on known attacks is not comprehensive, not
to mention that some of them even rarely occur in the real world. In addition,
the distribution of safety-critical data is usually multimodal, while most
traditional attacks and evaluation methods focus on a single modality. To solve
the above challenges, we propose a flow-based multimodal safety-critical
scenario generator for evaluating decisionmaking algorithms. The proposed
generative model is optimized with weighted likelihood maximization and a
gradient-based sampling procedure is integrated to improve the sampling
efficiency. The safety-critical scenarios are generated by querying the task
algorithms and the log-likelihood of the generated scenarios is in proportion
to the risk level. Experiments on a self-driving task demonstrate our
advantages in terms of testing efficiency and multimodal modeling capability.
We evaluate six Reinforcement Learning algorithms with our generated traffic
scenarios and provide empirical conclusions about their robustness.
- Abstract(参考訳): 既存のニューラルネットワークベースの自律システムは敵攻撃に対して脆弱であるため、その堅牢性に関する高度な評価は非常に重要である。
しかしながら、既知の攻撃に基づいて最悪のシナリオでのみロバスト性を評価することは包括的ではない。
加えて、安全クリティカルなデータの分布は通常マルチモーダルであり、伝統的な攻撃や評価方法は単一のモダリティに焦点を当てている。
上記の課題を解決するため,意思決定アルゴリズムを評価するためのフローベースマルチモーダル安全クリティカルシナリオジェネレータを提案する。
提案する生成モデルは重み付き確率最大化により最適化され, 勾配に基づくサンプリング手法が統合され, サンプリング効率が向上する。
セーフティクリティカルなシナリオはタスクアルゴリズムをクエリすることで生成され、生成されたシナリオのログライクな状態はリスクレベルに比例する。
自動運転タスクの実験は、テスト効率とマルチモーダルモデリング能力の観点から、我々の利点を示しています。
6つの強化学習アルゴリズムを生成したトラヒックシナリオで評価し,その頑健性に関する実証的結論を与える。
関連論文リスト
- ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - CausalAF: Causal Autoregressive Flow for Safety-Critical Driving
Scenario Generation [34.45216283597149]
フローベース生成フレームワークCausal Autoregressive Flow(CausalAF)を提案する。
CausalAFは生成モデルに対して、生成されたオブジェクト間の因果関係を発見し、追跡することを奨励する。
生成したシナリオを追加のトレーニングサンプルとして使用することで、自律運転アルゴリズムの堅牢性を実証的に改善することを示す。
論文 参考訳(メタデータ) (2021-10-26T18:07:48Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems [34.945482759378734]
シミュレーションの安全性評価には確率論的アプローチを用いており、危険事象の確率を計算することに関心がある。
探索, 利用, 最適化技術を組み合わせて, 故障モードを見つけ, 発生率を推定する新しいレアイベントシミュレーション手法を開発した。
論文 参考訳(メタデータ) (2020-08-24T17:46:27Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
自動運転車の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているようだ。
既存の標準は、検証が要求をカバーするテストケースのセットだけを必要とする決定論的プロセスに焦点を当てています。
本稿では, 自動生成テストケースを最悪のシナリオに偏り付け, システムの挙動の統計的特性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-04T04:35:22Z) - Learning to Collide: An Adaptive Safety-Critical Scenarios Generating
Method [20.280573307366627]
本稿では,タスクアルゴリズム評価のための安全クリティカルなシナリオを作成するための生成フレームワークを提案する。
提案手法は,グリッド探索や人的設計手法よりも安全クリティカルなシナリオを効率的に生成できることを実証する。
論文 参考訳(メタデータ) (2020-03-02T21:26:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。