What Do People Want to Know About Artificial Intelligence (AI)? The Importance of Answering End-User Questions to Explain Autonomous Vehicle (AV) Decisions
- URL: http://arxiv.org/abs/2505.06428v1
- Date: Fri, 09 May 2025 20:57:34 GMT
- Title: What Do People Want to Know About Artificial Intelligence (AI)? The Importance of Answering End-User Questions to Explain Autonomous Vehicle (AV) Decisions
- Authors: Somayeh Molaei, Lionel P. Robert, Nikola Banovic,
- Abstract summary: We conduct user studies to investigate questions that potential AV passengers might pose while riding in an AV.<n>Our initial formative study identified a range of questions about AI in autonomous driving that existing explanation mechanisms do not readily address.<n>Our second study demonstrated that interactive text-based explanations effectively improved participants' comprehension of AV decisions.
- Score: 5.279158665191503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving end-users' understanding of decisions made by autonomous vehicles (AVs) driven by artificial intelligence (AI) can improve utilization and acceptance of AVs. However, current explanation mechanisms primarily help AI researchers and engineers in debugging and monitoring their AI systems, and may not address the specific questions of end-users, such as passengers, about AVs in various scenarios. In this paper, we conducted two user studies to investigate questions that potential AV passengers might pose while riding in an AV and evaluate how well answers to those questions improve their understanding of AI-driven AV decisions. Our initial formative study identified a range of questions about AI in autonomous driving that existing explanation mechanisms do not readily address. Our second study demonstrated that interactive text-based explanations effectively improved participants' comprehension of AV decisions compared to simply observing AV decisions. These findings inform the design of interactions that motivate end-users to engage with and inquire about the reasoning behind AI-driven AV decisions.
Related papers
- Heterogeneous Decision Making in Mixed Traffic: Uncertainty-aware Planning and Bounded Rationality [31.66608520780982]
We study heterogeneous decision making by automated vehicles (AVs) and human-driven vehicles (HVs) in a mixed traffic environment.<n>Our findings reveal some intriguing phenomena, such as Goodhart's Law in AV's learning performance and compounding effects in HV's decision making process.
arXiv Detail & Related papers (2025-02-25T00:32:33Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.<n>Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision.
Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users.
arXiv Detail & Related papers (2023-01-13T01:08:49Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for Future Research Directions [8.012552653212687]
This study sheds light on the development of explainable artificial intelligence (XAI) approaches for autonomous driving.
First, we provide a thorough overview of the state-of-the-art and emerging approaches for XAI-based autonomous driving.
We then propose a conceptual framework that considers the essential elements for explainable end-to-end autonomous driving.
arXiv Detail & Related papers (2021-12-21T22:51:37Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Explanations in Autonomous Driving: A Survey [7.353589916907923]
We provide a comprehensive survey of the existing work in explainable autonomous driving.
We identify and categorise the different stakeholders involved in the development, use, and regulation of AVs.
arXiv Detail & Related papers (2021-03-09T00:31:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.