Heterogeneous Decision Making in Mixed Traffic: Uncertainty-aware Planning and Bounded Rationality
- URL: http://arxiv.org/abs/2502.18529v1
- Date: Tue, 25 Feb 2025 00:32:33 GMT
- Title: Heterogeneous Decision Making in Mixed Traffic: Uncertainty-aware Planning and Bounded Rationality
- Authors: Hang Wang, Qiaoyi Fang, Junshan Zhang,
- Abstract summary: We study heterogeneous decision making by automated vehicles (AVs) and human-driven vehicles (HVs) in a mixed traffic environment.<n>Our findings reveal some intriguing phenomena, such as Goodhart's Law in AV's learning performance and compounding effects in HV's decision making process.
- Score: 31.66608520780982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The past few years have witnessed a rapid growth of the deployment of automated vehicles (AVs). Clearly, AVs and human-driven vehicles (HVs) will co-exist for many years, and AVs will have to operate around HVs, pedestrians, cyclists, and more, calling for fundamental breakthroughs in AI designed for mixed traffic to achieve mixed autonomy. Thus motivated, we study heterogeneous decision making by AVs and HVs in a mixed traffic environment, aiming to capture the interactions between human and machine decision-making and develop an AI foundation that enables vehicles to operate safely and efficiently. There are a number of challenges to achieve mixed autonomy, including 1) humans drivers make driving decisions with bounded rationality, and it remains open to develop accurate models for HVs' decision making; and 2) uncertainty-aware planning plays a critical role for AVs to take safety maneuvers in response to the human behavior. In this paper, we introduce a formulation of AV-HV interaction, where the HV makes decisions with bounded rationality and the AV employs uncertainty-aware planning based on the prediction on HV's future actions. We conduct a comprehensive analysis on AV and HV's learning regret to answer the questions: 1) {How does the learning performance depend on HV's bounded rationality and AV's planning}; 2) {How do different decision making strategies impact the overall learning performance}? Our findings reveal some intriguing phenomena, such as Goodhart's Law in AV's learning performance and compounding effects in HV's decision making process. By examining the dynamics of the regrets, we gain insights into the interplay between human and machine decision making.
Related papers
- Socially-Aware Autonomous Driving: Inferring Yielding Intentions for Safer Interactions [7.735477839355801]
We propose a social intention estimation algorithm rooted in Directed Acyclic Graph (DAG) and a decision-making framework employing Deep Reinforcement Learning (DRL) algorithms.
To evaluate the method's performance, the proposed framework can be tested and applied in a lane-changing scenario within a simulated environment.
arXiv Detail & Related papers (2025-04-28T17:24:04Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.<n>Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Automated Vehicles at Unsignalized Intersections: Safety and Efficiency Implications of Mixed-Human-Automated Traffic [6.9492069439607995]
The integration of automated vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency.<n>This study aims to bridge the gap by examining behavioral differences and adaptations of AVs and human-driven vehicles (HVs) at unsignalized intersections.<n>The findings reveal a paradox in mixed traffic flow: while AVs maintain larger safety margins, their conservative behavior can lead to unexpected situations for human drivers.
arXiv Detail & Related papers (2024-10-16T13:19:32Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Development and Assessment of Autonomous Vehicles in Both Fully
Automated and Mixed Traffic Conditions [0.0]
The paper presents a multi-stage approach, starting with the development of a single AV and progressing to connected AVs.
A survey is conducted to validate the driving performance of the AV and will be utilized for a mixed traffic case study.
Results show that using deep reinforcement learning, the AV acquired driving behavior that reached human driving performance.
The adoption of sharing and caring based V2V communication within AV networks enhances their driving behavior, aids in more effective action planning, and promotes collaborative behavior amongst the AVs.
arXiv Detail & Related papers (2023-12-08T02:40:11Z) - Stackelberg Driver Model for Continual Policy Improvement in
Scenario-Based Closed-Loop Autonomous Driving [5.765939495779461]
adversarial generation methods have emerged as a class of efficient approaches to synthesize safety-critical scenarios.
We tailor the Stackelberg Driver Model (SDM) to accurately characterize the hierarchical nature of vehicle interaction dynamics.
Our algorithm exhibits superior performance compared to several baselines especially in higher dimensional scenarios.
arXiv Detail & Related papers (2023-09-25T15:47:07Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - A Survey on Autonomous Vehicle Control in the Era of Mixed-Autonomy:
From Physics-Based to AI-Guided Driving Policy Learning [7.881140597011731]
This paper serves as an introduction and overview of the potentially useful models and methodologies from artificial intelligence (AI) into the field of transportation engineering for autonomous vehicle (AV) control.
We will discuss state-of-the-art applications of AI-guided methods, identify opportunities and obstacles, raise open questions, and help suggest the building blocks and areas where AI could play a role in mixed autonomy.
arXiv Detail & Related papers (2020-07-10T04:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.