Direct space-time modeling of mechanically dressed dipole-dipole interactions with electromagnetically-coupled oscillating dipoles
- URL: http://arxiv.org/abs/2505.06514v1
- Date: Sat, 10 May 2025 05:07:24 GMT
- Title: Direct space-time modeling of mechanically dressed dipole-dipole interactions with electromagnetically-coupled oscillating dipoles
- Authors: Yi-Ming Chang, Kamran Akbari, Matthew Filipovich, Stephen Hughes,
- Abstract summary: We study the radiative dynamics of coupled electric dipoles in the presence of real-time mechanical oscillations.<n>The scaled population (excitation) dynamics of the LOs are investigated as well as the emitted radiation and electromagnetic spectra.
- Score: 0.5356944479760104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the radiative dynamics of coupled electric dipoles, modelled as Lorentz oscillators (LOs), in the presence of real-time mechanical oscillations. The dipoles are treated in a self-consistent way through a direct electromagnetic simulation approach that fully includes the dynamical movement of the charges, accounting for radiation reaction, emission and absorption. This allows for a powerful numerical solution of optomechanical resonances without any perturbative approximations for the mechanical motion. The scaled population (excitation) dynamics of the LOs are investigated as well as the emitted radiation and electromagnetic spectra, which demonstrates how the usual dipole-dipole resonances couple to the underlying Floquet states, yielding multiple spectral peaks that are separated from the superradiant and subradiant states by an integer number of the mechanical oscillation frequency. Moreover, we observe that when the mechanical amplitude and frequency are sufficiently large, these additional spectral peaks undergo further modification, including spectral splitting, spectral squeezing, or shifting. These observations are fully corroborated by a theoretical Floquet analysis conducted on two coupled harmonic oscillators.
Related papers
- Surface hopping simulations show valley depolarization driven by exciton-phonon resonance [0.0]
We show that resonances between excitonic transitions and nuclear coordinates contribute to valley depolarization in monolayer MoS$$.<n>Results are consistent with experimental measurements across temperatures.
arXiv Detail & Related papers (2025-05-11T11:52:49Z) - Dynamics and Spectral Response of linear-quadratic optomechanical interaction: Effects of pure dephasing [55.2480439325792]
The decoherence dynamics and spectral response of an optomechanical system is addressed.<n>The decoherence considered arises from pure dephasing, described by the Milburn evolution of the Schr"odinger equation.<n>Results and discussion comparing the inclusions of the linear, quadratic, and linear-quadratic couplings are given.
arXiv Detail & Related papers (2025-01-24T17:13:09Z) - Simulating anharmonic vibrational polaritons beyond the long wavelength approximation [0.0]
We investigate anharmonic vibrational polaritons formed due to strong light-matter interactions in an optical cavity.
We employ self-consistent phonon theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-polariton spectra.
arXiv Detail & Related papers (2024-09-12T12:36:06Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Cooperative subwavelength molecular quantum emitter arrays [0.0]
Dipole-coupled subwavelength quantum emitter arrays respond cooperatively to external light fields as they may host collective excitations with super- or subradiant character.
We provide analytical and numerical results on the modification of super- and subradiance in molecular rings of dipoles.
We extend previous predictions for the generation of coherent light from ideal quantum emitters to molecular emitters, quantifying the role of vibronic coupling onto the output intensity and coherence.
arXiv Detail & Related papers (2022-03-09T19:00:59Z) - Optomechanical parametric oscillation of a quantum light-fluid lattice [0.0]
We describe a fully-resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
We show that the coherent mechanical oscillations correspond to parametric resonances with threshold condition different to that of standard linear optomechanical self-oscillation.
The observed new phenomena can have applications for the generation of entangled phonon pairs, squeezed mechanical states relevant in sensing and quantum computation, and for the bidirectional frequency conversion of signals in a technologically relevant range.
arXiv Detail & Related papers (2021-12-30T23:59:43Z) - Fano Resonances in Quantum Transport with Vibrations [50.591267188664666]
Quantum mechanical scattering continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances.
We consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states.
arXiv Detail & Related papers (2021-08-07T12:13:59Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Quantum theory of two-dimensional materials coupled to electromagnetic
resonators [0.0]
We present a microscopic quantum theory of light-matter interaction in pristine sheets of two-dimensional semiconductors coupled to localized electromagnetic resonators.
The light-matter interaction breaks the translation symmetry of excitons in the two-dimensional lattice, and we find that this symmetry-breaking interaction leads to the formation of a localized exciton state.
We quantify the influence of the environment and find that it is most pronounced for small lateral confinement length scales of the electromagnetic field in the resonator.
arXiv Detail & Related papers (2021-03-26T14:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.