Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
- URL: http://arxiv.org/abs/2501.18533v1
- Date: Thu, 30 Jan 2025 17:59:45 GMT
- Title: Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
- Authors: Yi Ding, Lijun Li, Bing Cao, Jing Shao,
- Abstract summary: We propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance.
Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks.
- Score: 25.606641582511106
- License:
- Abstract: Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin. Data and Models are released under: \href{https://dripnowhy.github.io/MIS/}{\texttt{https://dripnowhy.github.io/MIS/}}
Related papers
- SafeRoute: Adaptive Model Selection for Efficient and Accurate Safety Guardrails in Large Language Models [63.63254955809224]
We propose a binary router that distinguishes hard examples from easy ones.
Our method selectively applies the larger safety guard model to the data that the router considers hard, improving efficiency while maintaining accuracy.
Experimental results on multiple benchmark datasets demonstrate that our adaptive model selection significantly enhances the trade-off between computational cost and safety performance.
arXiv Detail & Related papers (2025-02-18T02:51:17Z) - MLLM-as-a-Judge for Image Safety without Human Labeling [81.24707039432292]
In the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content.
It is crucial to identify such unsafe images based on established safety rules.
Existing approaches typically fine-tune MLLMs with human-labeled datasets.
arXiv Detail & Related papers (2024-12-31T00:06:04Z) - Enhancing AI Safety Through the Fusion of Low Rank Adapters [7.384556630042846]
Low-Rank Adapter Fusion mitigates harmful responses when faced with malicious prompts.
We show a 42% reduction in the harmfulness rate by leveraging LoRA fusion between a task adapter and a safety adapter.
We also observe exaggerated safety behaviour, where the model rejects safe prompts that closely resemble unsafe ones.
arXiv Detail & Related papers (2024-12-30T13:12:27Z) - AEIOU: A Unified Defense Framework against NSFW Prompts in Text-to-Image Models [39.11841245506388]
Malicious users often exploit text-to-image (T2I) models to generate Not-Safe-for-Work (NSFW) images.
We introduce AEIOU, a framework that is Adaptable, Efficient, Interpretable, Optimizable, and Unified against NSFW prompts in T2I models.
arXiv Detail & Related papers (2024-12-24T03:17:45Z) - Safe to Serve: Aligning Instruction-Tuned Models for Safety and Helpfulness [0.0]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning and text generation.
LLMs can inadvertently generate unsafe or biased responses when prompted with problematic inputs.
This research addresses the critical challenge of developing language models that generate both helpful and harmless content.
arXiv Detail & Related papers (2024-11-26T06:52:22Z) - Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.
For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.
We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z) - Multitask Mayhem: Unveiling and Mitigating Safety Gaps in LLMs Fine-tuning [1.3307486544794784]
Red teaming/Safety alignment efforts show that fine-tuning models on benign (non-harmful) data could compromise safety.
This paper explores the task-wise safety degradation due to fine-tuning on downstream tasks such as summarization, code generation, translation, and classification.
Our work underscores the need for generalized alignment measures to ensure safer and more robust models.
arXiv Detail & Related papers (2024-09-18T08:04:24Z) - Direct Unlearning Optimization for Robust and Safe Text-to-Image Models [29.866192834825572]
Unlearning techniques have been developed to remove the model's ability to generate potentially harmful content.
These methods are easily bypassed by adversarial attacks, making them unreliable for ensuring the safety of generated images.
We propose Direct Unlearning Optimization (DUO), a novel framework for removing Not Safe For Work (NSFW) content from T2I models.
arXiv Detail & Related papers (2024-07-17T08:19:11Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment.
We design a synthetic data generation framework that captures salient aspects of an unsafe input.
Using this, we investigate three well-known safety fine-tuning methods.
arXiv Detail & Related papers (2024-07-14T16:12:57Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models [53.50543146583101]
Fine-tuning large language models on small datasets can enhance their performance on specific downstream tasks.
Malicious actors can subtly manipulate the structure of almost any task-specific dataset to foster significantly more dangerous model behaviors.
We propose a novel mitigation strategy that mixes in safety data which mimics the task format and prompting style of the user data.
arXiv Detail & Related papers (2024-06-12T18:33:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.