FreqMoE: Dynamic Frequency Enhancement for Neural PDE Solvers
- URL: http://arxiv.org/abs/2505.06858v2
- Date: Wed, 21 May 2025 04:53:03 GMT
- Title: FreqMoE: Dynamic Frequency Enhancement for Neural PDE Solvers
- Authors: Tianyu Chen, Haoyi Zhou, Ying Li, Hao Wang, Zhenzhe Zhang, Tianchen Zhu, Shanghang Zhang, Jianxin Li,
- Abstract summary: We propose FreqMoE, an efficient and progressive training framework that exploits the dependency of high-frequency signals on low-frequency components.<n>Experiments on both regular and irregular grid PDEs demonstrate that FreqMoE achieves up to 16.6% accuracy improvement.
- Score: 33.5401363681771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fourier Neural Operators (FNO) have emerged as promising solutions for efficiently solving partial differential equations (PDEs) by learning infinite-dimensional function mappings through frequency domain transformations. However, the sparsity of high-frequency signals limits computational efficiency for high-dimensional inputs, and fixed-pattern truncation often causes high-frequency signal loss, reducing performance in scenarios such as high-resolution inputs or long-term predictions. To address these challenges, we propose FreqMoE, an efficient and progressive training framework that exploits the dependency of high-frequency signals on low-frequency components. The model first learns low-frequency weights and then applies a sparse upward-cycling strategy to construct a mixture of experts (MoE) in the frequency domain, effectively extending the learned weights to high-frequency regions. Experiments on both regular and irregular grid PDEs demonstrate that FreqMoE achieves up to 16.6% accuracy improvement while using merely 2.1% parameters (47.32x reduction) compared to dense FNO. Furthermore, the approach demonstrates remarkable stability in long-term predictions and generalizes seamlessly to various FNO variants and grid structures, establishing a new ``Low frequency Pretraining, High frequency Fine-tuning'' paradigm for solving PDEs.
Related papers
- Least-Squares-Embedded Optimization for Accelerated Convergence of PINNs in Acoustic Wavefield Simulations [2.8948274245812327]
PINNs have shown promise in solving partial differential equations.<n>For scattered acoustic wavefield simulation based on Helmholtz equation, we derive a hybrid optimization framework.<n>This framework accelerates training convergence by embedding a least-squares (LS) solver directly into the GD loss function.
arXiv Detail & Related papers (2025-04-23T09:32:14Z) - LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators [20.77877474840923]
High-frequency information is a critical challenge in machine learning.<n>Deep neural nets exhibit the so-called spectral bias toward learning low-frequency components.<n>We propose a novel frequency-sensitive loss term based on radially binned spectral errors.
arXiv Detail & Related papers (2025-04-05T19:35:04Z) - Multi-frequency wavefield solutions for variable velocity models using meta-learning enhanced low-rank physics-informed neural network [3.069335774032178]
Physics-informed neural networks (PINNs) face significant challenges in modeling multi-frequency wavefields in complex velocity models.<n>We propose Meta-LRPINN, a novel framework that combines low-rank parameterization with meta-learning and frequency embedding.<n> Numerical experiments show that Meta-LRPINN achieves much fast convergence speed and much high accuracy compared to baseline methods.
arXiv Detail & Related papers (2025-02-02T20:12:39Z) - Spatial Annealing for Efficient Few-shot Neural Rendering [73.49548565633123]
We introduce an accurate and efficient few-shot neural rendering method named textbfSpatial textbfAnnealing regularized textbfNeRF (textbfSANeRF)<n>By adding merely one line of code, SANeRF delivers superior rendering quality and much faster reconstruction speed compared to current few-shot neural rendering methods.
arXiv Detail & Related papers (2024-06-12T02:48:52Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Solving Seismic Wave Equations on Variable Velocity Models with Fourier
Neural Operator [3.2307366446033945]
We propose a new framework paralleled Fourier neural operator (PFNO) for efficiently training the FNO-based solver.
Numerical experiments demonstrate the high accuracy of both FNO and PFNO with complicated velocity models.
PFNO admits higher computational efficiency on large-scale testing datasets, compared with the traditional finite-difference method.
arXiv Detail & Related papers (2022-09-25T22:25:57Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Hessian-Free High-Resolution Nesterov Acceleration for Sampling [55.498092486970364]
Nesterov's Accelerated Gradient (NAG) for optimization has better performance than its continuous time limit (noiseless kinetic Langevin) when a finite step-size is employed.
This work explores the sampling counterpart of this phenonemon and proposes a diffusion process, whose discretizations can yield accelerated gradient-based MCMC methods.
arXiv Detail & Related papers (2020-06-16T15:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.