論文の概要: Near-Field Channel Estimation for XL-MIMO: A Deep Generative Model Guided by Side Information
- arxiv url: http://arxiv.org/abs/2505.06900v1
- Date: Sun, 11 May 2025 08:35:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.10043
- Title: Near-Field Channel Estimation for XL-MIMO: A Deep Generative Model Guided by Side Information
- Title(参考訳): XL-MIMOの近距離チャネル推定:サイド情報による深部生成モデル
- Authors: Zhenzhou Jin, Li You, Derrick Wing Kwan Ng, Xiang-Gen Xia, Xiqi Gao,
- Abstract要約: 本稿では,大規模マルチインプット多重出力(XL-MIMO)システムにおける近接場(NF)チャネル推定について検討する。
我々は、推定チャネルを洗練するためのGenAIベースのアプローチを提案する。
実験結果から,提案手法はCEの大幅な性能向上を実現することができることが示された。
- 参考スコア(独自算出の注目度): 70.25632840894272
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper investigates the near-field (NF) channel estimation (CE) for extremely large-scale multiple-input multiple-output (XL-MIMO) systems. Considering the pronounced NF effects in XL-MIMO communications, we first establish a joint angle-distance (AD) domain-based spherical-wavefront physical channel model that captures the inherent sparsity of XL-MIMO channels. Leveraging the channel's sparsity in the joint AD domain, the CE is approached as a task of reconstructing sparse signals. Anchored in this framework, we first propose a compressed sensing algorithm to acquire a preliminary channel estimate. Harnessing the powerful implicit prior learning capability of generative artificial intelligence (GenAI), we further propose a GenAI-based approach to refine the estimated channel. Specifically, we introduce the preliminary estimated channel as side information, and derive the evidence lower bound (ELBO) of the log-marginal distribution of the target NF channel conditioned on the preliminary estimated channel, which serves as the optimization objective for the proposed generative diffusion model (GDM). Additionally, we introduce a more generalized version of the GDM, the non-Markovian GDM (NM-GDM), to accelerate the sampling process, achieving an approximately tenfold enhancement in sampling efficiency. Experimental results indicate that the proposed approach is capable of offering substantial performance gain in CE compared to existing benchmark schemes within NF XL-MIMO systems. Furthermore, our approach exhibits enhanced generalization capabilities in both the NF or far-field (FF) regions.
- Abstract(参考訳): 本稿では,超大規模マルチインプットマルチアウトプット(XL-MIMO)システムに対する近距離場(NF)チャネル推定(CE)について検討する。
XL-MIMO通信における顕著なNF効果を考慮し、まず、XL-MIMOチャネルの固有間隔をキャプチャする結合角距離(AD)領域ベースの球面波面物理チャネルモデルを確立する。
共同AD領域におけるチャネルの空間性を利用して、CEはスパース信号を再構成するタスクとしてアプローチされる。
本稿では,まず,予備チャネル推定値を取得するための圧縮センシングアルゴリズムを提案する。
生成人工知能(GenAI)の強力な暗黙的事前学習能力に配慮し、推定チャネルを洗練するためのGenAIベースのアプローチをさらに提案する。
具体的には,予備推定チャネルを副次情報として導入し,提案した生成拡散モデル(GDM)の最適化目的である推定チャネル上で条件付けられたターゲットNFチャネルの対数分布のエビデンスローバウンド(ELBO)を導出する。
さらに,非マルコフ型GDM (NM-GDM) のより一般化されたバージョンを導入し,サンプリング効率の約10倍向上を実現した。
実験結果から,提案手法は,NF XL-MIMOシステム内の既存のベンチマーク方式と比較して,CEの大幅な性能向上を実現することが可能であることが示唆された。
さらに,NF領域と遠距離領域(FF領域)領域の一般化能力も向上した。
関連論文リスト
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Pay Less But Get More: A Dual-Attention-based Channel Estimation Network
for Massive MIMO Systems with Low-Density Pilots [41.213515826100696]
低密度パイロットによる正確なチャネル推定を実現するために,デュアルアテンションに基づくチャネル推定ネットワーク(DACEN)を提案する。
実験結果から,提案手法は既存の手法よりも優れたチャネル推定性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T05:34:25Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
この課題に対処するために, 深部生成モデル(DGM)に基づく手法を提案する。
アップリンクチャネルとダウンリンクチャネルの部分的相互性を実行し、まず、周波数非依存のチャネルパラメータを推定する。
次に、各伝搬路の位相である周波数固有チャネルパラメータをダウンリンクトレーニングにより推定する。
論文 参考訳(メタデータ) (2022-03-09T18:32:10Z) - Deep Diffusion Models for Robust Channel Estimation [1.7259824817932292]
深部拡散モデルを用いたマルチインプット・マルチアウトプット(MIMO)チャネル推定のための新しい手法を提案する。
提案手法は,高次元空間の任意の点における無線チャネルのログ状勾配を推定するために訓練されたディープニューラルネットワークを用いている。
論文 参考訳(メタデータ) (2021-11-16T01:32:11Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - CNN based Channel Estimation using NOMA for mmWave Massive MIMO System [0.0]
本稿では,ハイブリッドアーキテクチャ上に構築されたミリ波(mmWave)系のチャネルを推定するための畳み込みニューラルネットワーク手法を提案する。
まず、受信した信号からチャネルの粗い推定を行う。
数値図は,提案手法が最小二乗推定,最小平均二乗誤差(MMSE)推定を上回り,クラマー・ラオ境界(CRB)に近いことを示す。
論文 参考訳(メタデータ) (2021-08-01T05:33:55Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。