論文の概要: RedTeamLLM: an Agentic AI framework for offensive security
- arxiv url: http://arxiv.org/abs/2505.06913v1
- Date: Sun, 11 May 2025 09:19:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.108169
- Title: RedTeamLLM: an Agentic AI framework for offensive security
- Title(参考訳): RedTeamLLM:攻撃的セキュリティのためのエージェントAIフレームワーク
- Authors: Brian Challita, Pierre Parrend,
- Abstract要約: 我々は,ペンテストタスクの自動化のための総合的なセキュリティモデルを備えた統合アーキテクチャであるRedTeamLLMを提案し,評価する。
RedTeamLLMは3つの重要なステップに従っている。
評価は、一連のエントリーレベルの自動解決を通じて行われるが、簡単なことではなく、CTFの課題である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: From automated intrusion testing to discovery of zero-day attacks before software launch, agentic AI calls for great promises in security engineering. This strong capability is bound with a similar threat: the security and research community must build up its models before the approach is leveraged by malicious actors for cybercrime. We therefore propose and evaluate RedTeamLLM, an integrated architecture with a comprehensive security model for automatization of pentest tasks. RedTeamLLM follows three key steps: summarizing, reasoning and act, which embed its operational capacity. This novel framework addresses four open challenges: plan correction, memory management, context window constraint, and generality vs. specialization. Evaluation is performed through the automated resolution of a range of entry-level, but not trivial, CTF challenges. The contribution of the reasoning capability of our agentic AI framework is specifically evaluated.
- Abstract(参考訳): 自動侵入テストから、ソフトウェアローンチ前のゼロデイアタックの発見に至るまで、エージェントAIはセキュリティエンジニアリングにおける大きな約束を求めている。
セキュリティと研究のコミュニティは、そのアプローチが悪意あるアクターによってサイバー犯罪に活用される前に、そのモデルを構築しなければならない。
そこで我々は,ペンテストタスクの自動化のための総合的なセキュリティモデルを備えた統合アーキテクチャであるRedTeamLLMを提案し,評価する。
RedTeamLLMは3つの重要なステップに従っている。
このフレームワークは、計画修正、メモリ管理、コンテキストウィンドウの制約、一般化と特殊化の4つのオープンな課題に対処する。
評価は、一連のエントリーレベルの自動解決を通じて行われるが、簡単なことではなく、CTFの課題である。
エージェントAIフレームワークの推論能力の貢献を具体的に評価する。
関連論文リスト
- AgentXploit: End-to-End Redteaming of Black-Box AI Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジィングフレームワークであるAgentXploitを提案する。
我々は、AgentXploitをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Securing Agentic AI: A Comprehensive Threat Model and Mitigation Framework for Generative AI Agents [0.0]
本稿では,GenAIエージェントに特化した包括的脅威モデルを提案する。
研究は、9つの主要な脅威を特定し、5つの主要なドメインにまたがってそれらを整理する。
論文 参考訳(メタデータ) (2025-04-28T16:29:24Z) - DoomArena: A framework for Testing AI Agents Against Evolving Security Threats [84.94654617852322]
本稿では,AIエージェントのセキュリティ評価フレームワークであるDoomArenaを紹介する。
プラグインフレームワークであり、現実的なエージェントフレームワークと簡単に統合できる。
モジュールであり、エージェントがデプロイされる環境の詳細から攻撃の開発を分離する。
論文 参考訳(メタデータ) (2025-04-18T20:36:10Z) - AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack Integration [40.350632196772466]
本稿では,大規模言語モデル(LLM)に対する完全自動化とエンドツーエンドのレッドコラボレーションのための新しいフレームワークであるAutoRedTeamerを紹介する。
AutoRedTeamerはマルチエージェントアーキテクチャとメモリ誘導型攻撃選択機構を組み合わせることで、新たな攻撃ベクトルの継続的な発見と統合を可能にする。
我々は、さまざまな評価設定でAutoRedTeamerの有効性を示し、HarmBenchのLlama-3.1-70Bに対する攻撃成功率を20%向上させた。
論文 参考訳(メタデータ) (2025-03-20T00:13:04Z) - A Framework for Evaluating Emerging Cyberattack Capabilities of AI [11.595840449117052]
本研究は,(1)エンド・ツー・エンド・エンド・アタック・チェーンの検証,(2)AI脅威評価のギャップの同定,(3)目標とする緩和の優先順位付けを支援する,という制約に対処する新たな評価フレームワークを導入する。
我々は、GoogleのThreat Intelligence Groupがカタログ化したサイバーインシデントにAIが関与した12,000件以上の実世界の事例を分析し、7つの代表的なアタックチェーンのアーキタイプをキュレートした。
我々は、特定の攻撃段階にわたって攻撃能力を増幅するAIの可能性について報告し、防御の優先順位付けを推奨する。
論文 参考訳(メタデータ) (2025-03-14T23:05:02Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security [0.0]
本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
論文 参考訳(メタデータ) (2024-05-09T18:15:12Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT、Automated Safety Scenario Red Teamingは、セマンティックなアグリゲーション、ターゲットブートストラップ、敵の知識注入という3つの方法で構成されている。
このプロンプトを4つの安全領域に分割し、ドメインがモデルの性能にどのように影響するかを詳細に分析する。
統計的に有意な性能差は, 意味的関連シナリオにおける絶対分類精度が最大11%, ゼロショット逆数設定では最大19%の絶対誤差率であることがわかった。
論文 参考訳(メタデータ) (2023-10-14T17:10:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。