論文の概要: Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security
- arxiv url: http://arxiv.org/abs/2406.07561v1
- Date: Thu, 9 May 2024 18:15:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:50:27.629061
- Title: Artificial Intelligence as the New Hacker: Developing Agents for Offensive Security
- Title(参考訳): ハッカーとしての人工知能:攻撃的セキュリティのためのエージェントの開発
- Authors: Leroy Jacob Valencia,
- Abstract要約: 本稿では,人工知能(AI)の攻撃的サイバーセキュリティへの統合について検討する。
サイバー攻撃をシミュレートし実行するために設計された、自律的なAIエージェントであるReaperAIを開発している。
ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the vast domain of cybersecurity, the transition from reactive defense to offensive has become critical in protecting digital infrastructures. This paper explores the integration of Artificial Intelligence (AI) into offensive cybersecurity, particularly through the development of an autonomous AI agent, ReaperAI, designed to simulate and execute cyberattacks. Leveraging the capabilities of Large Language Models (LLMs) such as GPT-4, ReaperAI demonstrates the potential to identify, exploit, and analyze security vulnerabilities autonomously. This research outlines the core methodologies that can be utilized to increase consistency and performance, including task-driven penetration testing frameworks, AI-driven command generation, and advanced prompting techniques. The AI agent operates within a structured environment using Python, enhanced by Retrieval Augmented Generation (RAG) for contextual understanding and memory retention. ReaperAI was tested on platforms including, Hack The Box, where it successfully exploited known vulnerabilities, demonstrating its potential power. However, the deployment of AI in offensive security presents significant ethical and operational challenges. The agent's development process revealed complexities in command execution, error handling, and maintaining ethical constraints, highlighting areas for future enhancement. This study contributes to the discussion on AI's role in cybersecurity by showcasing how AI can augment offensive security strategies. It also proposes future research directions, including the refinement of AI interactions with cybersecurity tools, enhancement of learning mechanisms, and the discussion of ethical guidelines for AI in offensive roles. The findings advocate for a unique approach to AI implementation in cybersecurity, emphasizing innovation.
- Abstract(参考訳): サイバーセキュリティの領域では、リアクティブ防衛から攻撃への移行がデジタルインフラを保護する上で重要になっている。
本稿では、人工知能(AI)の攻撃的サイバーセキュリティへの統合について、特にサイバー攻撃をシミュレートし実行するために設計された自律型AIエージェントReaperAIの開発を通して検討する。
GPT-4のような大規模言語モデル(LLM)の機能を活用することで、ReaperAIは、セキュリティ脆弱性を自律的に識別し、悪用し、分析する可能性を実証する。
本研究は、タスク駆動型浸透テストフレームワーク、AI駆動型コマンド生成、高度なプロンプト技術など、一貫性とパフォーマンスを向上させるために使用できる中核的な方法論を概説する。
このAIエージェントは、コンテキスト理解とメモリ保持のためにRetrieval Augmented Generation(RAG)によって強化されたPythonを使用して構造化環境で動作する。
ReaperAIはHack The Boxなどのプラットフォームでテストされ、既知の脆弱性を悪用し、その潜在能力を実証した。
しかし、AIの攻撃的セキュリティへの展開は、重大な倫理的および運用上の課題をもたらす。
エージェントの開発プロセスは、コマンドの実行、エラーハンドリング、倫理的制約の維持の複雑さを明らかにし、将来の強化の領域を強調した。
この研究は、AIが攻撃的セキュリティ戦略をどのように強化できるかを示すことによって、サイバーセキュリティにおけるAIの役割に関する議論に寄与する。
また、サイバーセキュリティツールとのAIインタラクションの洗練、学習メカニズムの強化、攻撃的な役割におけるAIの倫理的ガイドラインの議論など、将来の研究方向性も提案している。
この発見は、サイバーセキュリティにおけるAI実装に対するユニークなアプローチを提唱し、イノベーションを強調している。
関連論文リスト
- Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - Review of Generative AI Methods in Cybersecurity [0.6990493129893112]
本稿では、Generative AI(GenAI)の現状について概観する。
暴行、脱獄、即時注射と逆心理学の応用をカバーしている。
また、サイバー犯罪におけるGenAIのさまざまな応用として、自動ハッキング、フィッシングメール、ソーシャルエンジニアリング、リバース暗号、攻撃ペイロードの作成、マルウェアの作成などを提供している。
論文 参考訳(メタデータ) (2024-03-13T17:05:05Z) - Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
本稿では,人工知能(AI)をサイバー脅威知能(CTI)に統合する可能性について検討する。
我々は、AIに強化されたCTI処理パイプラインの青写真を提供し、そのコンポーネントと機能について詳述する。
倫理的ジレンマ、潜在的なバイアス、そしてAIによる意思決定における透明性の必須事項について論じる。
論文 参考訳(メタデータ) (2024-03-05T19:03:56Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
我々は、人間とAIのコラボレーションはサイバーセキュリティに価値があると論じている。
私たちは、AIの計算能力と人間の専門知識を取り入れたバランスのとれたアプローチの重要性を強調します。
論文 参考訳(メタデータ) (2023-09-28T01:20:44Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。