Boosting Cross-spectral Unsupervised Domain Adaptation for Thermal Semantic Segmentation
- URL: http://arxiv.org/abs/2505.06951v1
- Date: Sun, 11 May 2025 11:45:44 GMT
- Title: Boosting Cross-spectral Unsupervised Domain Adaptation for Thermal Semantic Segmentation
- Authors: Seokjun Kwon, Jeongmin Shin, Namil Kim, Soonmin Hwang, Yukyung Choi,
- Abstract summary: In autonomous driving, thermal image semantic segmentation has emerged as a critical research area.<n>In this paper, we present a comprehensive study on cross-spectral UDA for thermal image semantic segmentation.<n>We introduce a novel self-supervised loss designed to enhance the performance of the thermal segmentation model in nighttime scenarios.
- Score: 2.034732821736745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, thermal image semantic segmentation has emerged as a critical research area, owing to its ability to provide robust scene understanding under adverse visual conditions. In particular, unsupervised domain adaptation (UDA) for thermal image segmentation can be an efficient solution to address the lack of labeled thermal datasets. Nevertheless, since these methods do not effectively utilize the complementary information between RGB and thermal images, they significantly decrease performance during domain adaptation. In this paper, we present a comprehensive study on cross-spectral UDA for thermal image semantic segmentation. We first propose a novel masked mutual learning strategy that promotes complementary information exchange by selectively transferring results between each spectral model while masking out uncertain regions. Additionally, we introduce a novel prototypical self-supervised loss designed to enhance the performance of the thermal segmentation model in nighttime scenarios. This approach addresses the limitations of RGB pre-trained networks, which cannot effectively transfer knowledge under low illumination due to the inherent constraints of RGB sensors. In experiments, our method achieves higher performance over previous UDA methods and comparable performance to state-of-the-art supervised methods.
Related papers
- Multi-Modality Driven LoRA for Adverse Condition Depth Estimation [61.525312117638116]
We propose Multi-Modality Driven LoRA (MMD-LoRA) for Adverse Condition Depth Estimation.<n>It consists of two core components: Prompt Driven Domain Alignment (PDDA) and Visual-Text Consistent Contrastive Learning (VTCCL)<n>It achieves state-of-the-art performance on the nuScenes and Oxford RobotCar datasets.
arXiv Detail & Related papers (2024-12-28T14:23:58Z) - Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
Low-light image enhancement, particularly in cross-domain tasks such as mapping from the raw domain to the sRGB domain, remains a significant challenge.<n>We present a novel Mamba scanning mechanism, called RAWMamba, to effectively handle raw images with different CFAs.<n>We also present a Retinex Decomposition Module (RDM) grounded in Retinex prior, which decouples illumination from reflectance to facilitate more effective denoising and automatic non-linear exposure correction.
arXiv Detail & Related papers (2024-09-11T06:12:03Z) - Data Generation Scheme for Thermal Modality with Edge-Guided Adversarial Conditional Diffusion Model [10.539491614216839]
This paper introduces a novel approach termed the edge guided conditional diffusion model.
It aims to produce meticulously aligned pseudo thermal images at the pixel level,leveraging edge information extracted from visible images.
experiments on LLVIP demonstrate ECDM s superiority over existing state-of-the-art approaches in terms of image generation quality.
arXiv Detail & Related papers (2024-08-07T13:01:10Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Spectral Transfer Guided Active Domain Adaptation For Thermal Imagery [1.911678487931003]
We propose an active domain adaptation method to examine the efficiency of combining the visible spectrum and thermal imagery modalities.
We used the large-scale visible spectrum dataset MS-COCO as the source domain and the thermal dataset FLIR ADAS as the target domain.
Our proposed method outperforms the state-of-the-art active domain adaptation methods.
arXiv Detail & Related papers (2023-04-14T10:04:42Z) - Does Thermal Really Always Matter for RGB-T Salient Object Detection? [153.17156598262656]
This paper proposes a network named TNet to solve the RGB-T salient object detection (SOD) task.
In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image.
On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality.
arXiv Detail & Related papers (2022-10-09T13:50:12Z) - Maximizing Self-supervision from Thermal Image for Effective
Self-supervised Learning of Depth and Ego-motion [78.19156040783061]
Self-supervised learning of depth and ego-motion from thermal images shows strong robustness and reliability under challenging scenarios.
The inherent thermal image properties such as weak contrast, blurry edges, and noise hinder to generate effective self-supervision from thermal images.
We propose an effective thermal image mapping method that significantly increases image information, such as overall structure, contrast, and details, while preserving temporal consistency.
arXiv Detail & Related papers (2022-01-12T09:49:24Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Self-training Guided Adversarial Domain Adaptation For Thermal Imagery [0.12891210250935145]
We propose an unsupervised domain adaptation method which does not require RGB-to-thermal image pairs.
We employ large-scale RGB dataset MS-COCO as source domain and thermal dataset FLIR ADAS as target domain.
To perform self-training, pseudo labels are assigned to the samples on the target thermal domain to learn more generalized representations for the target domain.
arXiv Detail & Related papers (2021-06-14T05:17:21Z) - Robust pedestrian detection in thermal imagery using synthesized images [39.33977680993236]
We propose a method for improving pedestrian detection in the thermal domain using two stages.
First, a generative data augmentation approach is used, then a domain adaptation method using generated data adapts an RGB pedestrian detector.
Our detector achieves the best single-modality detection results on KAIST with respect to the state-of-the-art.
arXiv Detail & Related papers (2021-02-03T11:08:31Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.