A Sparse Bayesian Learning Algorithm for Estimation of Interaction Kernels in Motsch-Tadmor Model
- URL: http://arxiv.org/abs/2505.07068v1
- Date: Sun, 11 May 2025 17:43:32 GMT
- Title: A Sparse Bayesian Learning Algorithm for Estimation of Interaction Kernels in Motsch-Tadmor Model
- Authors: Jinchao Feng, Sui Tang,
- Abstract summary: We investigate the data-driven identification of asymmetric interaction kernels in the Motsch-Tadmor model.<n>We propose a variational framework that reformulates kernel identification using the implicit form of the governing equations.<n>We develop a sparse Bayesian learning algorithm that incorporates informative priors for regularization, quantifies uncertainty, and enables principled model selection.
- Score: 0.9821874476902972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the data-driven identification of asymmetric interaction kernels in the Motsch-Tadmor model based on observed trajectory data. The model under consideration is governed by a class of semilinear evolution equations, where the interaction kernel defines a normalized, state-dependent Laplacian operator that governs collective dynamics. To address the resulting nonlinear inverse problem, we propose a variational framework that reformulates kernel identification using the implicit form of the governing equations, reducing it to a subspace identification problem. We establish an identifiability result that characterizes conditions under which the interaction kernel can be uniquely recovered up to scale. To solve the inverse problem robustly, we develop a sparse Bayesian learning algorithm that incorporates informative priors for regularization, quantifies uncertainty, and enables principled model selection. Extensive numerical experiments on representative interacting particle systems demonstrate the accuracy, robustness, and interpretability of the proposed framework across a range of noise levels and data regimes.
Related papers
- Efficient Deconvolution in Populational Inverse Problems [6.1048542188987085]
This work is focussed on the inversion task of inferring the distribution over parameters of interest leading to multiple sets of observations.<n>The potential to solve such distributional inversion problems is driven by increasing availability of data, but a major roadblock is blind deconvolution.<n>We propose a methodology leveraging large data sets of observations, collected from different instantiations of the same physical processes, to simultaneously deconvolve the data corrupting noise distribution.
arXiv Detail & Related papers (2025-05-26T11:25:46Z) - Identifiable Multi-View Causal Discovery Without Non-Gaussianity [63.217175519436125]
We propose a novel approach to linear causal discovery in the framework of multi-view Structural Equation Models (SEM)<n>We prove the identifiability of all the parameters of the model without any further assumptions on the structure of the SEM other than it being acyclic.<n>The proposed methodology is validated through simulations and application on real data, where it enables the estimation of causal graphs between brain regions.
arXiv Detail & Related papers (2025-02-27T14:06:14Z) - A theoretical framework for overfitting in energy-based modeling [5.1337384597700995]
We investigate the impact of limited data on training pairwise energy-based models for inverse problems aimed at identifying interaction networks.<n>We show that optimal points for early stopping arise from the interplay between these timescales and the initial conditions of training.<n>We propose a generalization to arbitrary energy-based models by deriving the neural tangent kernel dynamics of the score function under the score-matching.
arXiv Detail & Related papers (2025-01-31T14:21:02Z) - Statistical Mechanics of Dynamical System Identification [2.8820361301109365]
We develop a statistical mechanics approach to analyze sparse equation discovery algorithms.<n>We provide a method for closed-loop inference, estimating the noise in a given model.<n>This perspective of sparse equation discovery is versatile and can be adapted to various other equation discovery algorithms.
arXiv Detail & Related papers (2024-03-04T04:32:28Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty.
A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient.
arXiv Detail & Related papers (2023-07-05T16:53:31Z) - Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics
Models [3.743859059772078]
Given a nonlinear data-driven dynamical system model, how can one propagate the ambiguity sets forward for multiple steps?
This problem is the key to solving distributionally robust control and learning-based control of such learned system models under a data-distribution shift.
We propose an algorithm that exactly propagates ambiguity sets through nonlinear data-driven models using the Koopman operator and CME, via the kernel maximum mean discrepancy geometry.
arXiv Detail & Related papers (2023-04-27T09:38:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Nonparametric learning of kernels in nonlocal operators [6.314604944530131]
We provide a rigorous identifiability analysis and convergence study for the learning of kernels in nonlocal operators.
We propose a nonparametric regression algorithm with a novel data adaptive RKHS Tikhonov regularization method based on the function space of identifiability.
arXiv Detail & Related papers (2022-05-23T02:47:55Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.