Constrained Online Decision-Making: A Unified Framework
- URL: http://arxiv.org/abs/2505.07101v2
- Date: Fri, 16 May 2025 02:25:55 GMT
- Title: Constrained Online Decision-Making: A Unified Framework
- Authors: Haichen Hu, David Simchi-Levi, Navid Azizan,
- Abstract summary: We investigate a general formulation of sequential decision-making with stage-wise feasibility constraints.<n>We propose a unified algorithmic framework that captures many existing constrained learning problems.<n>Our result offers a principled foundation for constrained sequential decision-making in both theory and practice.
- Score: 14.465944215100746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contextual online decision-making problems with constraints appear in various real-world applications, such as personalized recommendation with resource limits and dynamic pricing with fairness constraints. In this paper, we investigate a general formulation of sequential decision-making with stage-wise feasibility constraints, where at each round, the learner must select an action based on observed context while ensuring a problem-specific feasibility criterion. We propose a unified algorithmic framework that captures many existing constrained learning problems, including constrained bandits, stream active learning, online hypothesis testing, and model calibration. Central to our approach is the concept of upper counterfactual confidence bound, which enables the design of practically efficient online algorithms using any offline conditional density estimation oracle. Technically, to handle feasibility constraints, we introduce a generalized notion of the eluder dimension, extending it from the classical setting based on square loss to a broader class of metric-like probability divergences, which could capture the complexity of various density function classes and characterize the loss incurred due to feasibility constraint uncertainty. Our result offers a principled foundation for constrained sequential decision-making in both theory and practice.
Related papers
- Conformal Mixed-Integer Constraint Learning with Feasibility Guarantees [0.3058340744328236]
Conformal Mixed-Integer Constraint Learning provides probabilistic feasibility guarantees for data-driven constraints in optimization problems.<n>We show that C-MICL consistently achieves target rates, maintains competitive objective performance, and significantly reduces computational cost compared to existing methods.
arXiv Detail & Related papers (2025-06-04T03:26:31Z) - Enforcing Hard Linear Constraints in Deep Learning Models with Decision Rules [8.098452803458253]
This paper proposes a model-agnostic framework for enforcing input-dependent linear equality and inequality constraints on neural network outputs.<n>The architecture combines a task network trained for prediction accuracy with a safe network trained using decision rules from the runtime and robust optimization to ensure feasibility across the entire input space.
arXiv Detail & Related papers (2025-05-20T03:09:44Z) - Generalized Decision Focused Learning under Imprecise Uncertainty--Theoretical Study [6.137404366514538]
Decision Focused Learning has emerged as a critical paradigm for integrating machine learning with downstream optimisation.<n>Existing methodologies predominantly rely on probabilistic models and focus narrowly on task objectives.<n>This paper bridges these gaps by introducing innovative frameworks.
arXiv Detail & Related papers (2025-02-25T08:53:02Z) - Deep Learning for Resilient Adversarial Decision Fusion in Byzantine Networks [0.43512163406551996]
This paper introduces a deep learning-based framework for resilient decision fusion in adversarial multi-sensor networks.<n>The proposed approach employs a deep neural network trained on a globally constructed dataset to generalize across all cases without requiring adaptation.
arXiv Detail & Related papers (2024-12-17T10:02:04Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning [71.14237199051276]
We consider classical distribution-agnostic framework and algorithms minimising empirical risks.
We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks is extremely challenging.
arXiv Detail & Related papers (2023-09-13T16:33:27Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
We develop a Chance Constraint Learning (CCL) methodology with a focus on mixed-integer linear optimization problems.
CCL makes use of linearizable machine learning models to estimate conditional quantiles of the learned variables.
An open-access software has been developed to be used by practitioners.
arXiv Detail & Related papers (2022-07-08T11:54:39Z) - On the Complexity of Adversarial Decision Making [101.14158787665252]
We show that the Decision-Estimation Coefficient is necessary and sufficient to obtain low regret for adversarial decision making.
We provide new structural results that connect the Decision-Estimation Coefficient to variants of other well-known complexity measures.
arXiv Detail & Related papers (2022-06-27T06:20:37Z) - Recursive Constraints to Prevent Instability in Constrained
Reinforcement Learning [16.019477271828745]
We consider the challenge of finding a deterministic policy for a Markov decision process.
This class of problem is known to be hard, but the combined requirements of determinism and uniform optimality can create learning instability.
We present a suitable constrained reinforcement learning algorithm that prevents learning instability.
arXiv Detail & Related papers (2022-01-20T02:33:24Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z) - Probably Approximately Correct Constrained Learning [135.48447120228658]
We develop a generalization theory based on the probably approximately correct (PAC) learning framework.
We show that imposing a learner does not make a learning problem harder in the sense that any PAC learnable class is also a constrained learner.
We analyze the properties of this solution and use it to illustrate how constrained learning can address problems in fair and robust classification.
arXiv Detail & Related papers (2020-06-09T19:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.