Deep Learning for Resilient Adversarial Decision Fusion in Byzantine Networks
- URL: http://arxiv.org/abs/2412.12739v1
- Date: Tue, 17 Dec 2024 10:02:04 GMT
- Title: Deep Learning for Resilient Adversarial Decision Fusion in Byzantine Networks
- Authors: Kassem Kallas,
- Abstract summary: This paper introduces a deep learning-based framework for resilient decision fusion in adversarial multi-sensor networks.<n>The proposed approach employs a deep neural network trained on a globally constructed dataset to generalize across all cases without requiring adaptation.
- Score: 0.43512163406551996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a deep learning-based framework for resilient decision fusion in adversarial multi-sensor networks, providing a unified mathematical setup that encompasses diverse scenarios, including varying Byzantine node proportions, synchronized and unsynchronized attacks, unbalanced priors, adaptive strategies, and Markovian states. Unlike traditional methods, which depend on explicit parameter tuning and are limited by scenario-specific assumptions, the proposed approach employs a deep neural network trained on a globally constructed dataset to generalize across all cases without requiring adaptation. Extensive simulations validate the method's robustness, achieving superior accuracy, minimal error probability, and scalability compared to state-of-the-art techniques, while ensuring computational efficiency for real-time applications. This unified framework demonstrates the potential of deep learning to revolutionize decision fusion by addressing the challenges posed by Byzantine nodes in dynamic adversarial environments.
Related papers
- Variational Bayesian Bow tie Neural Networks with Shrinkage [0.276240219662896]
We build a relaxed version of the standard feed-forward rectified neural network.
We employ Polya-Gamma data augmentation tricks to render a conditionally linear and Gaussian model.
We derive a variational inference algorithm that avoids distributional assumptions and independence across layers.
arXiv Detail & Related papers (2024-11-17T17:36:30Z) - Regularization for Adversarial Robust Learning [18.46110328123008]
We develop a novel approach to adversarial training that integrates $phi$-divergence regularization into the distributionally robust risk function.
This regularization brings a notable improvement in computation compared with the original formulation.
We validate our proposed method in supervised learning, reinforcement learning, and contextual learning and showcase its state-of-the-art performance against various adversarial attacks.
arXiv Detail & Related papers (2024-08-19T03:15:41Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Towards Improving Robustness Against Common Corruptions using Mixture of
Class Specific Experts [10.27974860479791]
This paper introduces a novel paradigm known as the Mixture of Class-Specific Expert Architecture.
The proposed architecture aims to mitigate vulnerabilities associated with common neural network structures.
arXiv Detail & Related papers (2023-11-16T20:09:47Z) - Learning Interpretable Deep Disentangled Neural Networks for
Hyperspectral Unmixing [16.02193274044797]
We propose a new interpretable deep learning method for hyperspectral unmixing that accounts for nonlinearity and endmember variability.
The model is learned end-to-end using backpropagation, and trained using a self-supervised strategy.
Experimental results on synthetic and real datasets illustrate the performance of the proposed method.
arXiv Detail & Related papers (2023-10-03T18:21:37Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation.
By modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity.
We show that FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very close to the upper bound of an explicit ensemble of networks.
arXiv Detail & Related papers (2022-05-31T18:33:15Z) - Model-Free Learning of Optimal Deterministic Resource Allocations in
Wireless Systems via Action-Space Exploration [4.721069729610892]
We propose a technically grounded and scalable deterministic-dual gradient policy method for efficiently learning optimal parameterized resource allocation policies.
Our method not only efficiently exploits gradient availability of popular universal representations such as deep networks, but is also truly model-free, as it relies on consistent zeroth-order gradient approximations of associated random network services constructed via low-dimensional perturbations in action space.
arXiv Detail & Related papers (2021-08-23T18:26:16Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.