Conformal Mixed-Integer Constraint Learning with Feasibility Guarantees
- URL: http://arxiv.org/abs/2506.03531v1
- Date: Wed, 04 Jun 2025 03:26:31 GMT
- Title: Conformal Mixed-Integer Constraint Learning with Feasibility Guarantees
- Authors: Daniel Ovalle, Lorenz T. Biegler, Ignacio E. Grossmann, Carl D. Laird, Mateo Dulce Rubio,
- Abstract summary: Conformal Mixed-Integer Constraint Learning provides probabilistic feasibility guarantees for data-driven constraints in optimization problems.<n>We show that C-MICL consistently achieves target rates, maintains competitive objective performance, and significantly reduces computational cost compared to existing methods.
- Score: 0.3058340744328236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Conformal Mixed-Integer Constraint Learning (C-MICL), a novel framework that provides probabilistic feasibility guarantees for data-driven constraints in optimization problems. While standard Mixed-Integer Constraint Learning methods often violate the true constraints due to model error or data limitations, our C-MICL approach leverages conformal prediction to ensure feasible solutions are ground-truth feasible. This guarantee holds with probability at least $1{-}\alpha$, under a conditional independence assumption. The proposed framework supports both regression and classification tasks without requiring access to the true constraint function, while avoiding the scalability issues associated with ensemble-based heuristics. Experiments on real-world applications demonstrate that C-MICL consistently achieves target feasibility rates, maintains competitive objective performance, and significantly reduces computational cost compared to existing methods. Our work bridges mathematical optimization and machine learning, offering a principled approach to incorporate uncertainty-aware constraints into decision-making with rigorous statistical guarantees.
Related papers
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COIN is an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question.<n>COIN estimates the empirical error rate on a calibration set and applies confidence interval methods to establish a high-probability upper bound on the true error rate.<n>We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data.
arXiv Detail & Related papers (2025-06-25T07:04:49Z) - Enforcing Hard Linear Constraints in Deep Learning Models with Decision Rules [8.098452803458253]
This paper proposes a model-agnostic framework for enforcing input-dependent linear equality and inequality constraints on neural network outputs.<n>The architecture combines a task network trained for prediction accuracy with a safe network trained using decision rules from the runtime and robust optimization to ensure feasibility across the entire input space.
arXiv Detail & Related papers (2025-05-20T03:09:44Z) - Constrained Online Decision-Making: A Unified Framework [14.465944215100746]
We investigate a general formulation of sequential decision-making with stage-wise feasibility constraints.<n>We propose a unified algorithmic framework that captures many existing constrained learning problems.<n>Our result offers a principled foundation for constrained sequential decision-making in both theory and practice.
arXiv Detail & Related papers (2025-05-11T19:22:04Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.<n>We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - f-FERM: A Scalable Framework for Robust Fair Empirical Risk Minimization [9.591164070876689]
This paper presents a unified optimization framework for fair empirical risk based on f-divergence measures (f-FERM)
In addition, our experiments demonstrate the superiority of fairness-accuracy tradeoffs offered by f-FERM for almost all batch sizes.
Our extension is based on a distributionally robust optimization reformulation of f-FERM objective under $L_p$ norms as uncertainty sets.
arXiv Detail & Related papers (2023-12-06T03:14:16Z) - Calibrated Data-Dependent Constraints with Exact Satisfaction Guarantees [46.94549066382216]
We consider the task of training machine learning models with data-dependent constraints.
We reformulate data-dependent constraints so that they are calibrated: enforcing the reformulated constraints guarantees that their expected value counterparts are satisfied with a user-prescribed probability.
arXiv Detail & Related papers (2023-01-15T21:41:40Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
We develop a Chance Constraint Learning (CCL) methodology with a focus on mixed-integer linear optimization problems.
CCL makes use of linearizable machine learning models to estimate conditional quantiles of the learned variables.
An open-access software has been developed to be used by practitioners.
arXiv Detail & Related papers (2022-07-08T11:54:39Z) - The empirical duality gap of constrained statistical learning [115.23598260228587]
We study the study of constrained statistical learning problems, the unconstrained version of which are at the core of virtually all modern information processing.
We propose to tackle the constrained statistical problem overcoming its infinite dimensionality, unknown distributions, and constraints by leveraging finite dimensional parameterizations, sample averages, and duality theory.
We demonstrate the effectiveness and usefulness of this constrained formulation in a fair learning application.
arXiv Detail & Related papers (2020-02-12T19:12:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.