論文の概要: Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression
- arxiv url: http://arxiv.org/abs/2505.07119v2
- Date: Thu, 15 May 2025 15:05:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 14:06:36.730178
- Title: Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression
- Title(参考訳): 効率的な圧縮による視覚異常検出のためのスケーラブルなIoTデプロイメント
- Authors: Arianna Stropeni, Francesco Borsatti, Manuel Barusco, Davide Dalle Pezze, Marco Fabris, Gian Antonio Susto,
- Abstract要約: 視覚異常検出(VAD)は産業環境において重要な課題であり、運用コストの最小化が不可欠である。
本研究は,コンパクトで効率的な処理戦略を活用することにより,これらの制約下でのVADの効果的実行方法について検討する。
- 参考スコア(独自算出の注目度): 4.521278242509125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual Anomaly Detection (VAD) is a key task in industrial settings, where minimizing operational costs is essential. Deploying deep learning models within Internet of Things (IoT) environments introduces specific challenges due to limited computational power and bandwidth of edge devices. This study investigates how to perform VAD effectively under such constraints by leveraging compact, efficient processing strategies. We evaluate several data compression techniques, examining the tradeoff between system latency and detection accuracy. Experiments on the MVTec AD benchmark demonstrate that significant compression can be achieved with minimal loss in anomaly detection performance compared to uncompressed data. Current results show up to 80% reduction in end-to-end inference time, including edge processing, transmission, and server computation.
- Abstract(参考訳): 視覚異常検出(VAD)は産業環境において重要な課題であり、運用コストの最小化が不可欠である。
IoT(Internet of Things)環境にディープラーニングモデルをデプロイすることは、計算能力の制限とエッジデバイスの帯域幅の制限による、特別な問題を引き起こす。
本研究は,コンパクトで効率的な処理戦略を活用することにより,これらの制約下でのVADの効果的実行方法について検討する。
我々は,システム遅延と検出精度のトレードオフを検証し,複数のデータ圧縮手法を評価する。
MVTec ADベンチマークの実験では、非圧縮データと比較して、異常検出性能の低下を最小限に抑え、大幅な圧縮を実現することができる。
現在の結果は、エッジ処理、送信、サーバ計算を含む、エンドツーエンドの推論時間を最大80%削減する。
関連論文リスト
- FLARE: Feature-based Lightweight Aggregation for Robust Evaluation of IoT Intrusion Detection [0.0]
モノのインターネット(IoT)デバイスは攻撃面を拡張し、ネットワーク保護のために効率的な侵入検知システム(IDS)を必要とする。
本稿では、IoT侵入検出の堅牢な評価のための機能ベースの軽量アグリゲーションであるFLAREを提案する。
我々は、IoT IDSの攻撃を分類するために、4つの教師付き学習モデルと2つのディープラーニングモデルを使用します。
論文 参考訳(メタデータ) (2025-04-21T18:33:53Z) - Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference [49.77734021302196]
本稿では,マルチモーダル理解のためのタスク指向特徴圧縮(TOFC)手法を提案する。
圧縮効率を向上させるために、視覚特徴の特性に基づいて複数のエントロピーモデルを適応的に選択する。
その結果,TOFCはデータ転送オーバヘッドの最大60%削減,システム遅延の50%削減を実現している。
論文 参考訳(メタデータ) (2025-03-17T08:37:22Z) - Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks [22.036794530902608]
本稿では,KAN(Kolmogorov-Arnold Networks)に基づくDoS攻撃検出の新しい軽量アプローチを提案する。
Kanは、最小限のリソース要件を維持しながら、最先端の検知性能を達成する。
既存のソリューションと比較して、kanは競合検出率を維持しながら、メモリ要求を最大98%削減する。
論文 参考訳(メタデータ) (2025-02-03T21:19:46Z) - Patch-aware Vector Quantized Codebook Learning for Unsupervised Visual Defect Detection [4.081433571732692]
産業応用においては、教師なしの視覚欠陥検出が重要である。
教師なし欠陥検出に最適化された拡張VQ-VAEフレームワークを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-15T22:26:26Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Pareto Data Framework: Steps Towards Resource-Efficient Decision Making Using Minimum Viable Data (MVD) [0.0]
戦略的データ削減は、帯域幅、エネルギ、計算、ストレージコストを大幅に削減しつつ、高いパフォーマンスを維持することができることを示す。
このフレームワークは、最小生存データ(MVD)を特定し、パフォーマンスを犠牲にすることなく、リソース制約のある環境をまたいだ効率を最適化する。
論文 参考訳(メタデータ) (2024-09-18T16:31:19Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
フォグ/エッジコンピューティング環境において, DRL(Deep Reinforcement Learning)に基づく配置技術が提案されている。
IMPortance weighted Actor-Learner Architectures (IMPALA) に基づくアクタ批判に基づく分散アプリケーション配置手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T11:25:03Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。