A Generative Re-ranking Model for List-level Multi-objective Optimization at Taobao
- URL: http://arxiv.org/abs/2505.07197v1
- Date: Mon, 12 May 2025 03:01:14 GMT
- Title: A Generative Re-ranking Model for List-level Multi-objective Optimization at Taobao
- Authors: Yue Meng, Cheng Guo, Yi Cao, Tong Liu, Bo Zheng,
- Abstract summary: We propose a novel end-to-end generative re-ranking model named Sequential Ordered Regression Transformer-Generator (SORT-Gen) for the less-studied list-level multi-objective optimization problem.<n>SORT-Gen has been successfully deployed in multiple scenarios of Taobao App, serving for a vast number of users.
- Score: 20.11584617315975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: E-commerce recommendation systems aim to generate ordered lists of items for customers, optimizing multiple business objectives, such as clicks, conversions and Gross Merchandise Volume (GMV). Traditional multi-objective optimization methods like formulas or Learning-to-rank (LTR) models take effect at item-level, neglecting dynamic user intent and contextual item interactions. List-level multi-objective optimization in the re-ranking stage can overcome this limitation, but most current re-ranking models focus more on accuracy improvement with context. In addition, re-ranking is faced with the challenges of time complexity and diversity. In light of this, we propose a novel end-to-end generative re-ranking model named Sequential Ordered Regression Transformer-Generator (SORT-Gen) for the less-studied list-level multi-objective optimization problem. Specifically, SORT-Gen is divided into two parts: 1)Sequential Ordered Regression Transformer innovatively uses Transformer and ordered regression to accurately estimate multi-objective values for variable-length sub-lists. 2)Mask-Driven Fast Generation Algorithm combines multi-objective candidate queues, efficient item selection and diversity mechanism into model inference, providing a fast online list generation method. Comprehensive online experiments demonstrate that SORT-Gen brings +4.13% CLCK and +8.10% GMV for Baiyibutie, a notable Mini-app of Taobao. Currently, SORT-Gen has been successfully deployed in multiple scenarios of Taobao App, serving for a vast number of users.
Related papers
- Pareto-Grid-Guided Large Language Models for Fast and High-Quality Heuristics Design in Multi-Objective Combinatorial Optimization [3.952819864255911]
Multi-objective optimization problems (MOCOP) frequently arise in practical applications that require the simultaneous optimization of conflicting objectives.<n>We introduce Multi-heuristics for MOCOP via Pareto-Grid-guided Evolution of LLMs (MPaGE)<n>MPaGE utilizes LLMs to prioritize with semantically distinct logical structures during variation, thus promoting diversity and mitigating redundancy within the population.
arXiv Detail & Related papers (2025-07-28T15:26:43Z) - User Long-Term Multi-Interest Retrieval Model for Recommendation [20.2928687653132]
We propose a new framework named User Long-term Multi-Interest Retrieval Model(ULIM), which enables thousand-scale behavior modeling in retrieval stages.<n>We show that ULIM achieves substantial improvement over state-of-the-art methods, and brings 5.54% clicks, 11.01% orders and 4.03% GMV lift for Taobaomiaosha, a notable mini-app of Taobao.
arXiv Detail & Related papers (2025-07-14T09:32:26Z) - Learning Item Representations Directly from Multimodal Features for Effective Recommendation [51.49251689107541]
multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations.<n>We propose a novel model (i.e., LIRDRec) that learns item representations directly from multimodal features to augment recommendation performance.
arXiv Detail & Related papers (2025-05-08T05:42:22Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement.<n>We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing.<n>We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance.
arXiv Detail & Related papers (2025-03-19T14:46:53Z) - Adapt-$\infty$: Scalable Continual Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$ is a new multi-way and adaptive data selection approach for lifelong instruction tuning.<n>We construct pseudo-skill clusters by grouping gradient-based sample vectors.<n>We select the best-performing data selector for each skill cluster from a pool of selector experts.<n>This data selector samples a subset of the most important samples from each skill cluster for training.
arXiv Detail & Related papers (2024-10-14T15:48:09Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Non-autoregressive Generative Models for Reranking Recommendation [9.854541524740549]
In a recommendation system, reranking plays a crucial role by modeling the intra-list correlations among items.<n>We propose a Non-AutoRegressive generative model for reranking Recommendation (NAR4Rec) designed to enhance efficiency and effectiveness.<n> NAR4Rec has been fully deployed in a popular video app Kuaishou with over 300 million daily active users.
arXiv Detail & Related papers (2024-02-10T03:21:13Z) - MultiSlot ReRanker: A Generic Model-based Re-Ranking Framework in
Recommendation Systems [6.0232112783722]
We propose a generic model-based re-ranking framework, MultiSlot ReRanker, which simultaneously optimize relevance, diversity, and freshness.
We have built a multi-slot re-ranking simulator based on OpenAI Gym integrated with the Ray framework.
arXiv Detail & Related papers (2024-01-11T23:17:07Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z) - Multi-Objective Personalized Product Retrieval in Taobao Search [27.994166796745496]
We propose a novel Multi-Objective Personalized Product Retrieval (MOPPR) model with four hierarchical optimization objectives: relevance, exposure, click and purchase.
MOPPR achieves 0.96% transaction and 1.29% GMV improvements in a 28-day online A/B test.
Since the Double-11 shopping festival of 2021, MOPPR has been fully deployed in mobile Taobao search, replacing the previous MGDSPR.
arXiv Detail & Related papers (2022-10-09T05:18:42Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
We introduce a method involving multi-goal sampling followed by ranking for user-relevance (Sample-Rank) to nudge recommendations towards multi-objective goals of the marketplace.
The proposed method's novelty is that it reduces the MO recommendation problem to sampling from a desired multi-goal distribution then using it to build a production-friendly learning-to-rank model.
arXiv Detail & Related papers (2020-08-24T09:17:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.