SAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models
- URL: http://arxiv.org/abs/2505.07247v2
- Date: Thu, 15 May 2025 11:01:45 GMT
- Title: SAS-Bench: A Fine-Grained Benchmark for Evaluating Short Answer Scoring with Large Language Models
- Authors: Peichao Lai, Kexuan Zhang, Yi Lin, Linyihan Zhang, Feiyang Ye, Jinhao Yan, Yanwei Xu, Conghui He, Yilei Wang, Wentao Zhang, Bin Cui,
- Abstract summary: SAS-Bench is a benchmark for large language models (LLMs) based Short Answer Scoring tasks.<n>It provides fine-grained, step-wise scoring, expert-annotated error categories, and a diverse range of question types.<n>We also release an open-source dataset containing 1,030 questions and 4,109 student responses, each annotated by domain experts.
- Score: 36.10798324093408
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Subjective Answer Grading (SAG) plays a crucial role in education, standardized testing, and automated assessment systems, particularly for evaluating short-form responses in Short Answer Scoring (SAS). However, existing approaches often produce coarse-grained scores and lack detailed reasoning. Although large language models (LLMs) have demonstrated potential as zero-shot evaluators, they remain susceptible to bias, inconsistencies with human judgment, and limited transparency in scoring decisions. To overcome these limitations, we introduce SAS-Bench, a benchmark specifically designed for LLM-based SAS tasks. SAS-Bench provides fine-grained, step-wise scoring, expert-annotated error categories, and a diverse range of question types derived from real-world subject-specific exams. This benchmark facilitates detailed evaluation of model reasoning processes and explainability. We also release an open-source dataset containing 1,030 questions and 4,109 student responses, each annotated by domain experts. Furthermore, we conduct comprehensive experiments with various LLMs, identifying major challenges in scoring science-related questions and highlighting the effectiveness of few-shot prompting in improving scoring accuracy. Our work offers valuable insights into the development of more robust, fair, and educationally meaningful LLM-based evaluation systems.
Related papers
- Evaluating Scoring Bias in LLM-as-a-Judge [8.751901240110888]
Large Language Models (LLMs) are employed as evaluators for complex tasks.<n>There are various biases within LLM-as-a-Judge, which adversely affect the fairness and reliability of judgments.
arXiv Detail & Related papers (2025-06-27T15:25:23Z) - Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games [3.725822359130832]
Large Language Models (LLMs) are increasingly being explored as evaluators in serious games.<n>This study investigates the reliability of five small-scale LLMs when assessing player responses in textitEn-join, a game that simulates decision-making within energy communities.<n>Our results highlight the strengths and limitations of each model, revealing trade-offs between sensitivity, specificity, and overall performance.
arXiv Detail & Related papers (2025-04-13T10:46:13Z) - Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering [78.89231943329885]
One of the most widely used tasks to evaluate Large Language Models (LLMs) is Multiple-Choice Question Answering (MCQA)<n>In this work, we shed light on the inconsistencies of MCQA evaluation strategies, which can lead to inaccurate and misleading model comparisons.
arXiv Detail & Related papers (2025-03-19T08:45:03Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.<n> Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - EQUATOR: A Deterministic Framework for Evaluating LLM Reasoning with Open-Ended Questions. # v1.0.0-beta [2.1249213103048414]
We introduce the EQUATOR Evaluator, which combines deterministic scoring with a focus on factual accuracy and robust reasoning assessment.<n>Using a vector database, EQUATOR pairs open-ended questions with human-evaluated answers, enabling more precise and scalable evaluations.<n>Our results demonstrate that this framework significantly outperforms traditional multiple-choice evaluations while maintaining high accuracy standards.
arXiv Detail & Related papers (2024-12-31T03:56:17Z) - StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs [78.84060166851805]
StructTest is a novel benchmark that evaluates large language models (LLMs) on their ability to follow compositional instructions and generate structured outputs.<n> Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets.<n>We demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o.
arXiv Detail & Related papers (2024-12-23T22:08:40Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Bench is a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks.<n>A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation.
arXiv Detail & Related papers (2024-06-09T12:30:30Z) - Exploring the Reliability of Large Language Models as Customized Evaluators for Diverse NLP Tasks [65.69651759036535]
We analyze whether large language models (LLMs) can serve as reliable alternatives to humans.<n>This paper explores both conventional tasks (e.g., story generation) and alignment tasks (e.g., math reasoning)<n>We find that LLM evaluators can generate unnecessary criteria or omit crucial criteria, resulting in a slight deviation from the experts.
arXiv Detail & Related papers (2023-10-30T17:04:35Z) - Get It Scored Using AutoSAS -- An Automated System for Scoring Short
Answers [63.835172924290326]
We present a fast, scalable, and accurate approach towards automated Short Answer Scoring (SAS)
We propose and explain the design and development of a system for SAS, namely AutoSAS.
AutoSAS shows state-of-the-art performance and achieves better results by over 8% in some of the question prompts.
arXiv Detail & Related papers (2020-12-21T10:47:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.