Causal mediation analysis with one or multiple mediators: a comparative study
- URL: http://arxiv.org/abs/2505.07323v1
- Date: Mon, 12 May 2025 08:10:50 GMT
- Title: Causal mediation analysis with one or multiple mediators: a comparative study
- Authors: Judith Abécassis, Houssam Zenati, Sami Boumaïza, Julie Josse, Bertrand Thirion,
- Abstract summary: We consider parametric and non-parametric implementations of classical estimators for causal mediation analysis.<n>We assess several approaches in a comprehensive benchmark on simulated data.<n>As an example of application, we propose a thorough analysis of factors known to influence cognitive functions.<n>This analysis shows that for several physiological factors, such as hypertension and obesity, a substantial part of the effect is mediated by changes in the brain structure.
- Score: 36.52655918884223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mediation analysis breaks down the causal effect of a treatment on an outcome into an indirect effect, acting through a third group of variables called mediators, and a direct effect, operating through other mechanisms. Mediation analysis is hard because confounders between treatment, mediators, and outcome blur effect estimates in observational studies. Many estimators have been proposed to adjust on those confounders and provide accurate causal estimates. We consider parametric and non-parametric implementations of classical estimators and provide a thorough evaluation for the estimation of the direct and indirect effects in the context of causal mediation analysis for binary, continuous, and multi-dimensional mediators. We assess several approaches in a comprehensive benchmark on simulated data. Our results show that advanced statistical approaches such as the multiply robust and the double machine learning estimators achieve good performances in most of the simulated settings and on real data. As an example of application, we propose a thorough analysis of factors known to influence cognitive functions to assess if the mechanism involves modifications in brain morphology using the UK Biobank brain imaging cohort. This analysis shows that for several physiological factors, such as hypertension and obesity, a substantial part of the effect is mediated by changes in the brain structure. This work provides guidance to the practitioner from the formulation of a valid causal mediation problem, including the verification of the identification assumptions, to the choice of an adequate estimator.
Related papers
- Black Box Causal Inference: Effect Estimation via Meta Prediction [56.277798874118425]
We frame causal inference as a dataset-level prediction problem, offloading algorithm design to the learning process.<n>We introduce, called black box causal inference (BBCI), builds estimators in a black-box manner by learning to predict causal effects from sampled dataset-effect pairs.<n>We demonstrate accurate estimation of average treatment effects (ATEs) and conditional average treatment effects (CATEs) with BBCI across several causal inference problems.
arXiv Detail & Related papers (2025-03-07T23:43:19Z) - General targeted machine learning for modern causal mediation analysis [3.813608775141218]
Causal mediation analyses investigate the mechanisms through which causes exert their effects.
We show that the identification formulas for six popular non-parametric approaches to mediation analysis can be recovered from just two statistical estimands.
We propose an all-purpose one-step estimation algorithm that can be coupled with machine learning in any mediation study.
arXiv Detail & Related papers (2024-08-26T20:31:26Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
We suggest a machine learning estimator of direct and indirect quantile treatment effects under a selection-on-observables assumption.
The proposed method is based on the efficient score functions of the cumulative distribution functions of potential outcomes.
We also propose a multiplier bootstrap for statistical inference and show the validity of the multiplier.
arXiv Detail & Related papers (2023-07-03T14:27:15Z) - Causal Mediation Analysis with Multi-dimensional and Indirectly Observed
Mediators [22.68115322836635]
Causal mediation analysis is a powerful method to dissect the total effect of a treatment into direct and mediated effects.
Most CMA methods assume that the mediator is one-dimensional and observable, which oversimplifies real-world scenarios.
We introduce a CMA framework that can handle complex and indirectly observed mediators based on the identifiable variational autoencoder (iVAE) architecture.
arXiv Detail & Related papers (2023-06-13T17:22:59Z) - Identification and multiply robust estimation in causal mediation analysis across principal strata [7.801213477601286]
We consider assessing causal mediation in the presence of a post-treatment event.
We derive the efficient influence function for each mediation estimand, which motivates a set of multiply robust estimators for inference.
arXiv Detail & Related papers (2023-04-20T00:39:20Z) - A Reinforcement Learning Framework for Dynamic Mediation Analysis [16.284199152492487]
We propose a reinforcement learning framework to evaluate dynamic mediation effects in settings with infinite horizons.
We decompose the average treatment effect into an immediate direct effect, an immediate mediation effect, a delayed direct effect, and a delayed mediation effect.
We develop robust and semi-parametrically efficient estimators under the RL framework to infer these causal effects.
arXiv Detail & Related papers (2023-01-31T00:50:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z) - Nonparametric inference for interventional effects with multiple
mediators [0.0]
We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques.
We demonstrate multiple robustness properties of the proposed estimators.
Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects.
arXiv Detail & Related papers (2020-01-16T19:05:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.