QUPID: Quantified Understanding for Enhanced Performance, Insights, and Decisions in Korean Search Engines
- URL: http://arxiv.org/abs/2505.07345v1
- Date: Mon, 12 May 2025 08:35:09 GMT
- Title: QUPID: Quantified Understanding for Enhanced Performance, Insights, and Decisions in Korean Search Engines
- Authors: Ohjoon Kwon, Changsu Lee, Jihye Back, Lim Sun Suk, Inho Kang, Donghyeon Jeon,
- Abstract summary: We show that combining two distinct small language models (SLMs) with different architectures can outperform large language models (LLMs) in relevance assessment.<n>Our approach -- QUPID -- integrates a generative SLM with an embedding-based SLM, achieving higher relevance judgment accuracy.
- Score: 4.94507535566914
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have been widely used for relevance assessment in information retrieval. However, our study demonstrates that combining two distinct small language models (SLMs) with different architectures can outperform LLMs in this task. Our approach -- QUPID -- integrates a generative SLM with an embedding-based SLM, achieving higher relevance judgment accuracy while reducing computational costs compared to state-of-the-art LLM solutions. This computational efficiency makes QUPID highly scalable for real-world search systems processing millions of queries daily. In experiments across diverse document types, our method demonstrated consistent performance improvements (Cohen's Kappa of 0.646 versus 0.387 for leading LLMs) while offering 60x faster inference times. Furthermore, when integrated into production search pipelines, QUPID improved nDCG@5 scores by 1.9%. These findings underscore how architectural diversity in model combinations can significantly enhance both search relevance and operational efficiency in information retrieval systems.
Related papers
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - LLMs as Data Annotators: How Close Are We to Human Performance [47.61698665650761]
Manual annotation of data is labor-intensive, time-consuming, and costly.<n>In-context learning (ICL) in which some examples related to the task are given in the prompt can lead to inefficiencies and suboptimal model performance.<n>This paper presents experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task.
arXiv Detail & Related papers (2025-04-21T11:11:07Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.<n>We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.<n>LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
An emerging application is using Large Language Models (LLMs) to enhance retrieval-augmented generation (RAG) capabilities.<n>We propose FRAMES, a high-quality evaluation dataset designed to test LLMs' ability to provide factual responses.<n>We present baseline results demonstrating that even state-of-the-art LLMs struggle with this task, achieving 0.40 accuracy with no retrieval.
arXiv Detail & Related papers (2024-09-19T17:52:07Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.<n>We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
arXiv Detail & Related papers (2024-04-23T08:24:43Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.