論文の概要: Synthetic Code Surgery: Repairing Bugs and Vulnerabilities with LLMs and Synthetic Data
- arxiv url: http://arxiv.org/abs/2505.07372v1
- Date: Mon, 12 May 2025 09:14:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.32731
- Title: Synthetic Code Surgery: Repairing Bugs and Vulnerabilities with LLMs and Synthetic Data
- Title(参考訳): 合成コード手術 : LLMと合成データによるバグと脆弱性の修復
- Authors: David de-Fitero-Dominguez, Antonio Garcia-Cabot, Eva Garcia-Lopez,
- Abstract要約: 本稿では,Large Language Models(LLMs)を用いた合成データ生成によるAPR(Automated Program repair)の向上手法を提案する。
提案手法は, 合成試料生成と厳密な品質評価という2段階のプロセスを通じて, この制限に対処する。
VulRepairテストセットデータセットの実験評価では、完全予測率の統計的に有意な改善が見られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a novel methodology for enhancing Automated Program Repair (APR) through synthetic data generation utilizing Large Language Models (LLMs). Current APR systems are constrained by the limited availability of high-quality training data encompassing diverse bug types across multiple programming languages. The proposed approach addresses this limitation through a two-phase process: a synthetic sample generation followed by a rigorous quality assessment. Multiple state-of-the-art LLMs were employed to generate approximately 30,000 paired examples of buggy and fixed code across 12 programming languages and 13 bug categories. Subsequently, these samples underwent cross-model evaluation against five criteria: correctness, code quality, security, performance, and completeness. Experimental evaluation on the VulRepair test set dataset showed statistically significant improvements in Perfect Prediction rates, with the quality-filtered synthetic dataset outperforming both baseline and real-world commit data configurations in certain scenarios. The methodology was validated through rigorous statistical testing, including ANOVA and post-hoc Tukey's Honest Significant Difference analysis. Furthermore, the best-performing configurations surpassed existing systems despite using a less computationally intensive decoding strategy. This research establishes a self-bootstrapping paradigm in which LLMs generate and evaluate their own training data, potentially transforming approaches to data scarcity across software engineering tasks and advancing the development of robust, adaptable tools for automated code maintenance.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) を用いた合成データ生成により,APR(Automated Program repair)を向上するための新しい手法を提案する。
現在のAPRシステムは、複数のプログラミング言語にまたがる多様なバグタイプを含む高品質なトレーニングデータの可用性の制限によって制限されている。
提案手法は, 合成試料生成と厳密な品質評価という2段階のプロセスを通じて, この制限に対処する。
複数の最先端のLLMを使用して、12のプログラミング言語と13のバグカテゴリにまたがる、約30,000のペアのバグと固定コードのサンプルを生成した。
その後、これらのサンプルは、正確性、コード品質、セキュリティ、パフォーマンス、完全性という5つの基準に対して、クロスモデル評価を行った。
VulRepairテストセットデータセットの実験評価では、一定のシナリオにおいて、ベースラインと実世界のコミットデータ構成の両方に優れた品質フィルター付き合成データセットにより、パーフェクト予測率の統計的に有意な改善が見られた。
この手法は、ANOVAやポストホックのTukey's Honest Signific difference Analysisを含む厳密な統計検査によって検証された。
さらに、計算集約的なデコード戦略を使用しても、性能の良い構成が既存のシステムを上回った。
本研究は、LCMが自身のトレーニングデータを生成し、評価するセルフブートストラッピングパラダイムを確立し、ソフトウェアエンジニアリングタスクにまたがるデータ不足へのアプローチを変革し、自動化されたコードメンテナンスのための堅牢で適応可能なツールの開発を前進させる可能性がある。
関連論文リスト
- Synthline: A Product Line Approach for Synthetic Requirements Engineering Data Generation using Large Language Models [0.5156484100374059]
本稿では,大規模言語モデルを用いて合成要求工学(RE)データを生成する製品ライン(PL)アプローチであるSynthlineを紹介する。
我々の分析によると、合成データセットは実際のデータよりも多様性が低いが、実行可能なトレーニングリソースとして機能するには十分である。
以上の結果から, 合成データと実データを組み合わせることで, 大幅な性能向上が期待できる。
論文 参考訳(メタデータ) (2025-05-06T07:57:16Z) - Synthetic Data Generation Using Large Language Models: Advances in Text and Code [0.0]
大規模言語モデル(LLM)は、自然言語とコードの両方で合成トレーニングデータを生成する新たな可能性を開いた。
これらの手法が,分類や質問応答などの低リソースなタスクをどのように強化するかを示す。
生成したテキストの事実的不正確さ、スタイリスティックなリアリズムの欠如、バイアス増幅のリスクといった課題に対処する。
論文 参考訳(メタデータ) (2025-03-18T08:34:03Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
大規模言語モデル(LLM)の最近の進歩は、コーディングベンチマークのパフォーマンスを改善している。
しかし、手軽に利用できる高品質なデータの枯渇により、改善は停滞している。
本稿では,単一モデルのコードとテスト生成能力を共同で改善するセルフプレイ・ソルバ検証フレームワークであるSol-Verを提案する。
論文 参考訳(メタデータ) (2025-02-20T18:32:19Z) - Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning [59.25951947621526]
本稿では,既存の符号化ベンチマークをスコアとランキングデータセットに変換して,合成検証の有効性を評価する手法を提案する。
我々は4つの新しいベンチマーク(HE-R, HE-R+, MBPP-R, MBPP-R+)を公表し, 標準, 推論, 報酬に基づくLCMを用いて合成検証手法を解析した。
実験の結果, 推論はテストケースの生成を著しく改善し, テストケースのスケーリングによって検証精度が向上することがわかった。
論文 参考訳(メタデータ) (2025-02-19T15:32:11Z) - Performance Evaluation of Large Language Models in Statistical Programming [9.333703895770913]
大規模言語モデル(LLM)は、自動コード生成に革命をもたらし、自動統計解析のための新しい道を開いた。
統計的解析のためのSASプログラミング分野において,ChatGPTの2バージョンとLlamaの1バージョンを含むLLMの性能を評価する。
我々は,LLMが生成するSASコードの品質を,正確性,有効性,可読性,実行可能性,出力結果の正確性に基づいて総合的に評価する。
論文 参考訳(メタデータ) (2025-02-18T18:37:15Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - On the Reliability and Explainability of Language Models for Program
Generation [15.569926313298337]
自動プログラム生成手法の能力と限界について検討する。
私たちは、コード変換に大きく貢献するトークンを強調するために、高度な説明可能なAIアプローチを採用しています。
解析の結果,言語モデルではコード文法や構造情報を認識できるが,入力シーケンスの変化に対するロバスト性は限られていることがわかった。
論文 参考訳(メタデータ) (2023-02-19T14:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。