論文の概要: Synthetic Data Generation Using Large Language Models: Advances in Text and Code
- arxiv url: http://arxiv.org/abs/2503.14023v1
- Date: Tue, 18 Mar 2025 08:34:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:16:43.495042
- Title: Synthetic Data Generation Using Large Language Models: Advances in Text and Code
- Title(参考訳): 大規模言語モデルを用いた合成データ生成:テキストとコードの進歩
- Authors: Mihai Nadas, Laura Diosan, Andreea Tomescu,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語とコードの両方で合成トレーニングデータを生成する新たな可能性を開いた。
これらの手法が,分類や質問応答などの低リソースなタスクをどのように強化するかを示す。
生成したテキストの事実的不正確さ、スタイリスティックなリアリズムの欠如、バイアス増幅のリスクといった課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) have unlocked new possibilities for generating synthetic training data in both natural language and code. By producing artificial but task-relevant examples, these models can significantly augment or even replace real-world datasets, especially when labeled data is scarce or sensitive. This paper surveys recent advances in using LLMs to create synthetic text and code, emphasizing prompt-based generation, retrieval-augmented pipelines, and iterative self-refinement. We show how these methods enrich low-resource tasks such as classification and question answering, as well as code-centric applications such as instruction tuning, code translation, and bug repair, by enabling automated verification of functional correctness. Alongside potential benefits like cost-effectiveness, broad coverage, and controllable diversity, we address challenges such as factual inaccuracies in generated text, lack of stylistic realism, and the risk of bias amplification. Proposed mitigations include filtering and weighting outputs and reinforcement learning with execution feedback for code. We conclude with open research directions like automated prompt engineering, cross-modal data synthesis, and robust evaluation frameworks, highlighting the importance of LLM-generated synthetic data in advancing AI while emphasizing ethical and quality safeguards.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語とコードの両方で合成トレーニングデータを生成する新たな可能性を開いた。
人工的だがタスク関連のある例を生成することによって、これらのモデルは、特にラベル付きデータが不足している場合やセンシティブな場合、現実世界のデータセットを大幅に拡張または置き換えることが可能になる。
本稿では,LLMを用いた合成テキストとコードの作成,即時生成,検索拡張パイプライン,反復的自己修正など,最近の進歩について調査する。
これらの手法は,機能的正当性の自動検証を可能にすることで,分類や質問応答などの低リソースタスクや,命令チューニングやコード翻訳,バグ修正といったコード中心のアプリケーションをどのように強化するかを示す。
コスト効率、広範なカバレッジ、制御可能な多様性といった潜在的なメリットに加えて、生成したテキストの事実的不正確さ、スタイリスティックなリアリズムの欠如、バイアス増幅のリスクといった課題にも対処する。
提案されている緩和策には、フィルタリングと出力の重み付け、コードの実行フィードバックによる強化学習などがある。
我々は、自動プロンプトエンジニアリング、クロスモーダルデータ合成、ロバストな評価フレームワークなどのオープンな研究の方向性で締めくくり、倫理的および品質的な保護を強調しながら、AIの進歩におけるLLM生成合成データの重要性を強調した。
関連論文リスト
- Bridging LLM-Generated Code and Requirements: Reverse Generation technique and SBC Metric for Developer Insights [0.0]
本稿では,SBCスコアと呼ばれる新しいスコアリング機構を提案する。
これは、大規模言語モデルの自然言語生成能力を活用するリバースジェネレーション技術に基づいている。
直接コード解析とは異なり、我々のアプローチはAI生成コードからシステム要求を再構築し、元の仕様と比較する。
論文 参考訳(メタデータ) (2025-02-11T01:12:11Z) - Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
本稿では,検索と推論を必要とする3つの長文タスクに対する合成データの微調整について検討する。
合成データに基づいてトレーニングされたモデルは、実際のデータには及ばないが、驚くべきことに、ミスマッチを解釈できる。
我々の結果は、合成データの微調整性能の解釈方法と、長期にわたる実世界の能力学習のためのより良いデータ作成方法に光を当てた。
論文 参考訳(メタデータ) (2024-10-29T17:55:00Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
本稿では,大規模言語モデルのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
論文 参考訳(メタデータ) (2024-07-29T20:42:59Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
大規模言語モデル(LLM)は、コード生成において顕著なブレークスルーを示している。
最近の研究は、いくつかの強力なLLMによって生成された合成データをトレーニングすることで、コードLLMを改善している。
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - Text2Data: Low-Resource Data Generation with Textual Control [100.5970757736845]
Text2Dataは、ラベルのないデータを使って基盤となるデータ配布を理解する新しいアプローチである。
制御性を確保し、破滅的な忘れを効果的に防止する、制約最適化に基づく新たな学習目標を通じて微調整を行う。
論文 参考訳(メタデータ) (2024-02-08T03:41:39Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
自然言語ナラティブで指定されたソフト推論タスクの言語モデルを評価するデータセットである MuSR を紹介する。
このデータセットには2つの重要な特徴がある。まず、ニューロシンボリック合成-自然生成アルゴリズムによって生成される。
第二に、私たちのデータセットインスタンスは、実世界の推論の領域に対応する無料のテキスト物語です。
論文 参考訳(メタデータ) (2023-10-24T17:59:20Z) - Generating Faithful Synthetic Data with Large Language Models: A Case
Study in Computational Social Science [13.854807858791652]
我々は、合成データ生成における広範囲な問題に取り組み、その生成分布は、研究者が関心を持つ実世界のデータ分布とは異なることが多い。
本研究では,合成データの忠実度を高めるための3つの戦略について検討する。
本稿では,特定のタスクに対して高忠実度合成データを生成する方法について提案する。
論文 参考訳(メタデータ) (2023-05-24T11:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。