Deep Learning Advances in Vision-Based Traffic Accident Anticipation: A Comprehensive Review of Methods,Datasets,and Future Directions
- URL: http://arxiv.org/abs/2505.07611v1
- Date: Mon, 12 May 2025 14:34:22 GMT
- Title: Deep Learning Advances in Vision-Based Traffic Accident Anticipation: A Comprehensive Review of Methods,Datasets,and Future Directions
- Authors: Yi Zhang, Wenye Zhou, Ruonan Lin, Xin Yang, Hao Zheng,
- Abstract summary: Vision-based traffic accident anticipation (Vision-TAA) has emerged as a promising approach in the era of deep learning.<n>This paper reviews 147 recent studies,focusing on the application of supervised,unsupervised,and hybrid learning models for accident prediction.
- Score: 10.3325464784641
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic accident prediction and detection are critical for enhancing road safety,and vision-based traffic accident anticipation (Vision-TAA) has emerged as a promising approach in the era of deep learning.This paper reviews 147 recent studies,focusing on the application of supervised,unsupervised,and hybrid deep learning models for accident prediction,alongside the use of real-world and synthetic datasets.Current methodologies are categorized into four key approaches: image and video feature-based prediction, spatiotemporal feature-based prediction, scene understanding,and multimodal data fusion.While these methods demonstrate significant potential,challenges such as data scarcity,limited generalization to complex scenarios,and real-time performance constraints remain prevalent. This review highlights opportunities for future research,including the integration of multimodal data fusion, self-supervised learning,and Transformer-based architectures to enhance prediction accuracy and scalability.By synthesizing existing advancements and identifying critical gaps, this paper provides a foundational reference for developing robust and adaptive Vision-TAA systems,contributing to road safety and traffic management.
Related papers
- Domain-Enhanced Dual-Branch Model for Efficient and Interpretable Accident Anticipation [5.188064309021252]
We propose an accident anticipation framework that integrates visual information from dashcam videos with structured textual data derived from accident reports.<n> Comprehensive evaluations conducted on benchmark datasets validate the superior predictive accuracy, enhanced responsiveness, reduced computational overhead, and improved interpretability of our approach.
arXiv Detail & Related papers (2025-07-17T03:16:28Z) - Trajectory Prediction in Dynamic Object Tracking: A Critical Study [2.836204494006322]
This study provides a detailed analysis of current advancements in dynamic object tracking (DOT) and trajectory prediction (TP) methodologies.<n>It covers various approaches, such as feature-based, segmentation-based, estimation-based, and learning-based methods.<n>The study highlights the significant impact of these technologies in automotive and autonomous vehicles, surveillance and security, healthcare, and industrial automation.
arXiv Detail & Related papers (2025-06-24T06:10:01Z) - INSIGHT: Enhancing Autonomous Driving Safety through Vision-Language Models on Context-Aware Hazard Detection and Edge Case Evaluation [7.362380225654904]
INSIGHT is a hierarchical vision-language model (VLM) framework designed to enhance hazard detection and edge-case evaluation.<n>By using multimodal data fusion, our approach integrates semantic and visual representations, enabling precise interpretation of driving scenarios.<n> Experimental results on the BDD100K dataset demonstrate a substantial improvement in hazard prediction straightforwardness and accuracy over existing models.
arXiv Detail & Related papers (2025-02-01T01:43:53Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling.<n>This paper systematically reviews recent advances in world models for autonomous driving.
arXiv Detail & Related papers (2025-01-20T04:00:02Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.<n>To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - The Integration of Prediction and Planning in Deep Learning Automated Driving Systems: A Review [43.30610493968783]
We review state-of-the-art deep learning-based planning systems, and focus on how they integrate prediction.
We discuss the implications, strengths, and limitations of different integration principles.
arXiv Detail & Related papers (2023-08-10T17:53:03Z) - Machine Learning for Autonomous Vehicle's Trajectory Prediction: A
comprehensive survey, Challenges, and Future Research Directions [3.655021726150368]
We have examined over two hundred studies related to trajectory prediction in the context of AVs.
This review conducts a comprehensive evaluation of several deep learning-based techniques.
By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction.
arXiv Detail & Related papers (2023-07-12T10:20:19Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - Traffic Prediction using Artificial Intelligence: Review of Recent
Advances and Emerging Opportunities [2.5199066832791535]
This survey aims to provide a comprehensive overview of traffic prediction methodologies.
Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods.
arXiv Detail & Related papers (2023-05-31T06:25:19Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.