論文の概要: KAQG: A Knowledge-Graph-Enhanced RAG for Difficulty-Controlled Question Generation
- arxiv url: http://arxiv.org/abs/2505.07618v2
- Date: Mon, 29 Sep 2025 17:01:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-01 14:44:59.734147
- Title: KAQG: A Knowledge-Graph-Enhanced RAG for Difficulty-Controlled Question Generation
- Title(参考訳): KAQG:難解な質問生成のための知識グラフ強化RAG
- Authors: Ching Han Chen, Ming Fang Shiu,
- Abstract要約: 本研究は知識強化質問生成(KAQG)を紹介する。
項目応答理論(IRT)、ブルームの分類学、知識グラフをマルチエージェント検索拡張生成システムに統合する。
提案手法は, 項目難易度, 心理測定校正, 認知アライメントのきめ細かい制御を可能にすることによって, 既存の手法の限界を克服する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces Knowledge Augmented Question Generation (KAQG), an educational assessment framework that integrates Item Response Theory, abbreviated as IRT, Bloom's Taxonomy, and knowledge graphs into a multi-agent Retrieval-Augmented Generation (RAG) system. The proposed approach overcomes limitations of existing methods by enabling fine-grained control over item difficulty, psychometric calibration, and cognitive alignment. It employs multi-graph isolation to preserve domain-specific semantics and leverages a distributed agent architecture coordinated through Data Distribution Service, abbreviated as DDS, for scalable and fault-tolerant operations. Each agent specializes in tasks such as retrieval, generation, or evaluation, forming a modular and traceable pipeline. Distinctively, the framework encodes semantic hierarchies, PageRank-based concept weighting, and assessment-theory parameters directly into the generation process, ensuring that questions are both contextually grounded and cognitively calibrated. Deployed at Taiwan's National Institute of Environmental Research, the system has demonstrated practical value by reducing manual workload, improving reliability and validity, and supporting both adaptive and standardized assessments. By integrating psychometric theory with AI-driven retrieval and generation, this work establishes a scalable and cognitively aligned solution for education and professional certification.
- Abstract(参考訳): 本研究では,項目応答理論(IRT,ブルームの分類学,知識グラフ)をマルチエージェント検索・拡張生成(RAG)システムに統合する教育アセスメントフレームワークであるKnowledge Augmented Question Generation(KAQG)を紹介する。
提案手法は、アイテムの難易度、心理測定校正、認知アライメントのきめ細かい制御を可能にすることによって、既存の手法の限界を克服する。
ドメイン固有のセマンティクスを保存するためにマルチグラフ分離を採用し、スケーラブルでフォールトトレラントな操作のために、Data Distribution Service(略してDDS)を介して調整された分散エージェントアーキテクチャを活用する。
各エージェントは、検索、生成、評価などのタスクを専門とし、モジュール的でトレーサブルなパイプラインを形成する。
このフレームワークは、セマンティック階層、PageRankベースの概念重み付け、およびアセスメント理論パラメータを直接生成プロセスにエンコードし、質問が文脈的に基礎付けられ、認知的に校正されることを保証する。
台湾の国立環境研究所で展開されているこのシステムは,手作業量の削減,信頼性と妥当性の向上,適応的評価と標準化評価の両方をサポートすることで,実用的価値を実証している。
心理学理論とAIによる検索と生成を統合することで、この研究は、スケーラブルで認知的に整合した、教育と専門的認定のためのソリューションを確立する。
関連論文リスト
- Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1は、エンドツーエンド強化学習(RL)によるエージェントGraphRAGフレームワークである
軽量な知識ハイパーグラフ構築、マルチターンエージェント環境相互作用としてのモデル検索を導入している。
標準RAGデータセットの実験では、Graph-R1は、精度、検索効率、生成品質を推算する従来のGraphRAGおよびRL強化RAGメソッドよりも優れていた。
論文 参考訳(メタデータ) (2025-07-29T15:01:26Z) - LTRR: Learning To Rank Retrievers for LLMs [53.285436927963865]
ルーティングベースのRAGシステムは、単一リトリバーベースのシステムよりも優れていることを示す。
パフォーマンス向上は、特にAnswer Correctness(AC)メトリックでトレーニングされたモデルで顕著である。
SIGIR 2025 LiveRAG チャレンジの一環として,提案システムを用いて提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2025-06-16T17:53:18Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - CC-RAG: Structured Multi-Hop Reasoning via Theme-Based Causal Graphs [23.587337743113228]
Causal-Chain RAG (CC-RAG) は、ゼロショットトリプル抽出とテーマ対応グラフ連鎖をRAGパイプラインに統合する新しいアプローチである。
ドメイン固有コーパスが与えられたとき、CC-RAGは、原因、関係、効果の3つの方向の非巡回グラフ(DAG)を構築し、構造化された回答生成を導くために前方/後方の連鎖を利用する。
論文 参考訳(メタデータ) (2025-06-10T02:22:32Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [18.96570718233786]
SPLIT-RAGは、質問駆動セマンティックグラフ分割と協調サブグラフ検索による制限に対処するマルチエージェントRAGフレームワークである。
革新的なフレームワークは、まずリンク情報のセマンティック分割を作成し、次にタイプ特化知識ベースを使用してマルチエージェントRAGを実現する。
属性対応グラフセグメンテーションは、知識グラフを意味的に一貫性のあるサブグラフに分割し、サブグラフが異なるクエリタイプと整合することを保証する。
階層的なマージモジュールは、論理的検証を通じて、部分グラフ由来の解答間の矛盾を解消する。
論文 参考訳(メタデータ) (2025-05-20T06:44:34Z) - AlignRAG: An Adaptable Framework for Resolving Misalignments in Retrieval-Aware Reasoning of RAG [61.28113271728859]
Retrieval-augmented Generation (RAG) は知識基底テキスト生成の基礎パラダイムとして登場した。
既存のRAGパイプラインは、しばしば、推論軌跡が、検索されたコンテンツによって課される明らかな制約と一致しないことを保証するのに失敗する。
そこで我々は,反復的批判駆動アライメントステップによる推論ミスアライメントを緩和する新しいテストタイムフレームワークであるAlignRAGを提案する。
論文 参考訳(メタデータ) (2025-04-21T04:56:47Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
大きな言語モデル(LLM)は強い推論能力を示すが、幻覚や時代遅れの知識のような制限に直面している。
本稿では、サブグラフを検索する知識グラフ(KG)ベースのRetrieval-Augmented Generation(RAG)フレームワークを拡張するSubgraphRAGを紹介する。
提案手法は,高効率かつフレキシブルなサブグラフ検索を実現するために,並列3重装飾機構を備えた軽量多層パーセプトロンを革新的に統合する。
論文 参考訳(メタデータ) (2024-10-28T04:39:32Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
大規模言語モデル(LLM)は、関連する知識の欠如により、現実世界の応用において幻覚に悩まされることがある。
KGQA(Knowledge Graph Question Answering)は、統合のための重要な手掛かりとなる。
LLMの対話型学習機能を活用してグラフ上での推論と議論を行う対話型KGQAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-05T01:11:58Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - TRACE the Evidence: Constructing Knowledge-Grounded Reasoning Chains for Retrieval-Augmented Generation [30.485127201645437]
本稿では,RAGモデルのマルチホップ推論能力を高めるためにTRACEを提案する。
TRACEは、論理的に連結された一連の知識三重項である知識基底推論連鎖を構成する。
TRACEは、取得したすべてのドキュメントと比較して、平均14.03%の性能向上を実現している。
論文 参考訳(メタデータ) (2024-06-17T12:23:32Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
GANによる制御可能な世代は依然として困難な研究課題である。
本稿では,自己学習を通じてジェネレータを制御する潜伏符号の分布を学習するための教師なしフレームワークを提案する。
我々のフレームワークは、変分オートエンコーダのような他の変種と比較して、より良い絡み合いを示す。
論文 参考訳(メタデータ) (2020-07-17T21:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。