論文の概要: BodyGPS: Anatomical Positioning System
- arxiv url: http://arxiv.org/abs/2505.07744v1
- Date: Mon, 12 May 2025 16:53:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:49.497167
- Title: BodyGPS: Anatomical Positioning System
- Title(参考訳): BodyGPS:解剖学的位置決めシステム
- Authors: Halid Ziya Yerebakan, Kritika Iyer, Xueqi Guo, Yoshihisa Shinagawa, Gerardo Hermosillo Valadez,
- Abstract要約: 医用画像にヒト解剖学を解析するための新しいタイプの基礎モデルを導入する。
教師なしまたは教師なしのトレーニングをサポートし、ユーザインタラクションの有無に関わらず、マッチング、登録、分類、セグメンテーションを行うことができる。
我々はCTとMRIの両方でアルゴリズムの有用性を実証する。
- 参考スコア(独自算出の注目度): 0.0699049312989311
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a new type of foundational model for parsing human anatomy in medical images that works for different modalities. It supports supervised or unsupervised training and can perform matching, registration, classification, or segmentation with or without user interaction. We achieve this by training a neural network estimator that maps query locations to atlas coordinates via regression. Efficiency is improved by sparsely sampling the input, enabling response times of less than 1 ms without additional accelerator hardware. We demonstrate the utility of the algorithm in both CT and MRI modalities.
- Abstract(参考訳): 医療画像における人体解剖解析のための新しいタイプの基礎モデルを提案する。
教師なしまたは教師なしのトレーニングをサポートし、ユーザインタラクションの有無に関わらず、マッチング、登録、分類、セグメンテーションを行うことができる。
我々は、クエリ位置を回帰によってアトラス座標にマッピングするニューラルネットワーク推定器をトレーニングすることで、これを実現する。
入力をわずかにサンプリングすることで効率が向上し、追加のアクセラレータハードウェアなしで1ミリ秒未満の応答時間を実現できる。
我々はCTとMRIの両方でアルゴリズムの有用性を実証する。
関連論文リスト
- MedFuncta: Modality-Agnostic Representations Based on Efficient Neural Fields [1.931185411277237]
我々は、ニューラルネットワークに基づくモダリティに依存しない連続データ表現であるMedFunctaを紹介する。
医療信号の冗長性を利用して、単一インスタンスから大規模データセットにニューラルネットワークをスケールする方法を実証する。
我々は、この方向の研究を促進するために、 > 550kの注釈付きニューラルネットワークの大規模なデータセットをリリースする。
論文 参考訳(メタデータ) (2025-02-20T09:38:13Z) - Motion-enhancement to Echocardiography Segmentation via Inserting a Temporal Attention Module: An Efficient, Adaptable, and Scalable Approach [4.923733944174007]
本稿では,時間的アテンションモジュールが複数回の特徴的相互作用を抽出する,新しい計算効率の代替手法を提案する。
このモジュールは、既存のCNNやTransformerベースのネットワークにシームレスに統合できる。
この結果から,TAMの堅牢性,スケーラビリティ,多種多様なデータセットとバックボーン間の一般化性が確認された。
論文 参考訳(メタデータ) (2025-01-24T21:35:24Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
本稿では,注釈付き脳外科ビデオの大規模なデータセットを活用するライブ画像のみのガイダンスを提案する。
生成されたロードマップは、トレーニングセットの手術で取られた一般的な解剖学的パスをエンコードする。
166例の腹腔鏡下腺摘出術を施行し,本法の有効性について検討した。
論文 参考訳(メタデータ) (2023-03-31T12:52:24Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - The Way to my Heart is through Contrastive Learning: Remote
Photoplethysmography from Unlabelled Video [10.479541955106328]
ビデオから生理的信号を確実に推定する能力は、低コストで臨床前の健康モニタリングにおいて強力なツールである。
本稿では, 人の顔や皮膚の観察から血液量の変化を計測するリモート光胸腺造影法(r)の新たなアプローチを提案する。
論文 参考訳(メタデータ) (2021-11-18T15:21:33Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
RSNA頭蓋内出血検出のためのシステムについて紹介する。
提案システムは,畳み込みニューラルネットワーク(CNN)を用いた軽量深層ニューラルネットワークアーキテクチャに基づいている。
最終テストセットの重み付き平均ログ損失は0.04989で、合計1345名から上位30名(2%)にランクインした。
論文 参考訳(メタデータ) (2020-08-01T17:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。