Integrated quantum polariton interferometry
- URL: http://arxiv.org/abs/2107.13376v1
- Date: Wed, 28 Jul 2021 14:09:23 GMT
- Title: Integrated quantum polariton interferometry
- Authors: Davide Nigro, Vincenzo D'Ambrosio, Daniele Sanvitto and Dario Gerace
- Abstract summary: We show that integrated circuits of single polaritons can be arranged to build deterministic quantum logic gates.
Our results introduce a novel paradigm for the development of practical quantum polaritonic devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exciton-polaritons are hybrid elementary excitations of light and matter
that, thanks to their nonlinear properties, enable a plethora of physical
phenomena ranging from room temperature condensation to superfluidity. While
polaritons are usually exploited in high density regime, evidence of quantum
correlations at the level of few excitations has been recently reported, thus
suggesting the possibility of using these systems for quantum information
purposes. Here we show that integrated circuits of propagating single
polaritons can be arranged to build deterministic quantum logic gates in which
the two-particle interaction energy plays a crucial role. Besides showing their
prospective potential for photonic quantum computation, we also show that these
systems can be exploited for metrology purposes, as for instance to precisely
measure the magnitude of the polariton-polariton interaction at the two-body
level. In general, our results introduce a novel paradigm for the development
of practical quantum polaritonic devices, in which the effective interaction
between single polaritonic qubits may provide a unique tool for future quantum
technologies.
Related papers
- Macroscopic quantum correlation using coherence manipulations of
polarization-path correlations of a continuous-wave laser [0.0]
A macroscopic quantum correlation is presented for coherence manipulations of polarization-path correlations of a continuous wave laser.
This feature opens the door to a new understanding of quantum mechanics beyond the microscopic regime for future classical optics-compatible quantum information.
arXiv Detail & Related papers (2023-08-08T06:31:11Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum amplification of boson-mediated interactions [0.0]
We experimentally demonstrate the amplification of a boson-mediated interaction between two trapped-ion qubits by parametric modulation of the trapping potential.
The technique can be used in any quantum platform where parametric modulation of the boson channel is possible.
arXiv Detail & Related papers (2020-09-29T23:22:55Z) - Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured
Potential Barriers and Interactions [2.409938612878261]
We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases.
The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers.
arXiv Detail & Related papers (2020-01-31T12:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.