Quon Classical Simulation: Unifying Clifford, Matchgates and Entanglement
- URL: http://arxiv.org/abs/2505.07804v1
- Date: Mon, 12 May 2025 17:53:05 GMT
- Title: Quon Classical Simulation: Unifying Clifford, Matchgates and Entanglement
- Authors: Zixuan Feng, Zhengwei Liu, Fan Lu, Ningfeng Wang,
- Abstract summary: We propose a unified classical simulation framework for quantum circuits, termed Quon Classical Simulation (QCS)<n>We introduce magic holes, a topological feature that captures the global source of computational hardness in simulating quantum systems.<n>We show that Clifford circuits and Matchgate circuits are free of magic holes and thus efficiently simulable within our model.
- Score: 1.1584392437481228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a unified classical simulation framework for quantum circuits, termed Quon Classical Simulation (QCS), built upon the diagrammatic formalism of the Quon language. Central to this framework is the introduction of magic holes, a topological feature that captures the global source of computational hardness in simulating quantum systems. Unlike conventional measures, the complexity of QCS is governed by the topological entanglement entropy associated with these magic holes. We show that Clifford circuits and Matchgate circuits are free of magic holes and thus efficiently simulable within our model. To capture the interaction structure of magic holes, we define a topological tensor network representation and develop novel skein relations and reduction algorithms to simplify circuit representations. This approach significantly improves the efficiency of classical simulations and provides a unified explanation for the tractability of various known quantum circuit classes. Our work offers a new topological perspective on the classical simulability of quantum systems and topological complexity.
Related papers
- Classical simulation of parity-preserving quantum circuits [0.0]
We present a classical simulation method for fermionic quantum systems without loss of generality.<n>We map such circuits to a fermionic tensor network and introduce a novel decomposition of non-Matchgate gates.<n>Our algorithm significantly lowers resource requirements for simulating parity-preserving circuits while retaining high accuracy.
arXiv Detail & Related papers (2025-04-27T17:42:39Z) - Efficient quantum-enhanced classical simulation for patches of quantum landscapes [0.0]
We show that it is always possible to generate a classical surrogate of a sub-region of an expectation landscape produced by a parameterized quantum circuit.<n>We provide a quantum-enhanced classical algorithm which, after simple measurements on a quantum device, allows one to classically simulate approximate expectation values of a subregion of a landscape.
arXiv Detail & Related papers (2024-11-29T18:00:07Z) - Disentangling unitary dynamics with classically simulable quantum circuits [0.0]
We study both quantum circuit and Hamiltonian dynamics.
We find that expectations of Pauli operators can be simulated efficiently even for deep Clifford circuits.
For the Hamiltonian dynamics we find that the classical simulation generically quickly becomes inefficient.
arXiv Detail & Related papers (2024-10-11T17:18:26Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - Lie-algebraic classical simulations for quantum computing [0.3774866290142281]
We present a framework for classical simulations, dubbed "$mathfrakg$-sim"<n>We show that $mathfrakg$-sim enables new regimes for classical simulations.<n>We report large-scale noiseless and noisy simulations on benchmark problems.
arXiv Detail & Related papers (2023-08-02T21:08:18Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
arXiv Detail & Related papers (2023-02-13T19:00:00Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Classical circuits can simulate quantum aspects [0.0]
This study introduces a method for simulating quantum systems using electrical networks.
By synthesizing interaction networks, we accurately simulate quantum systems of varying complexity, from $2-$state to $n-$state systems.
arXiv Detail & Related papers (2022-09-19T18:42:06Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.