論文の概要: ML-Enabled Eavesdropper Detection in Beyond 5G IIoT Networks
- arxiv url: http://arxiv.org/abs/2505.07837v1
- Date: Mon, 05 May 2025 08:49:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.206193
- Title: ML-Enabled Eavesdropper Detection in Beyond 5G IIoT Networks
- Title(参考訳): 5G IIoTネットワークを超越したML-Enabled Eavesdropper検出
- Authors: Maria-Lamprini A. Bartsioka, Ioannis A. Bartsiokas, Panagiotis K. Gkonis, Dimitra I. Kaklamani, Iakovos S. Venieris,
- Abstract要約: 本稿では,盗聴検出の一般的な問題に対処するために,機械学習とディープラーニング(ML/DL)技術を活用することに焦点を当てる。
ML/DLモデルは、チャネル状態情報(CSI)、位置データ、送信電力に基づいて、ユーザーを正当または悪意のあるものと分類する。
提案した数値結果によると,DCNN と RF モデルは,誤報ゼロの盗聴者の識別に100%接近する検出精度を達成している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced fifth generation (5G) and beyond (B5G) communication networks have revolutionized wireless technologies, supporting ultra-high data rates, low latency, and massive connectivity. However, they also introduce vulnerabilities, particularly in decentralized Industrial Internet of Things (IIoT) environments. Traditional cryptographic methods struggle with scalability and complexity, leading researchers to explore Artificial Intelligence (AI)-driven physical layer techniques for secure communications. In this context, this paper focuses on the utilization of Machine and Deep Learning (ML/DL) techniques to tackle with the common problem of eavesdropping detection. To this end, a simulated industrial B5G heterogeneous wireless network is used to evaluate the performance of various ML/DL models, including Random Forests (RF), Deep Convolutional Neural Networks (DCNN), and Long Short-Term Memory (LSTM) networks. These models classify users as either legitimate or malicious ones based on channel state information (CSI), position data, and transmission power. According to the presented numerical results, DCNN and RF models achieve a detection accuracy approaching 100\% in identifying eavesdroppers with zero false alarms. In general, this work underlines the great potential of combining AI and Physical Layer Security (PLS) for next-generation wireless networks in order to address evolving security threats.
- Abstract(参考訳): 先進5世代(5G)以降の通信ネットワークは、超高データレート、低レイテンシ、大規模な接続をサポートするワイヤレス技術に革命をもたらした。
しかし、特に分散型産業用IoT(Industrial Internet of Things)環境では脆弱性も導入されている。
従来の暗号手法はスケーラビリティと複雑さに悩まされており、研究者はセキュアな通信のための人工知能(AI)駆動の物理層技術を探究する。
本稿では,eavesdropping 検出の一般的な問題に対処するために,機械学習とディープラーニング(ML/DL)技術を活用することに焦点を当てる。
この目的のために、Random Forests (RF)、Deep Convolutional Neural Networks (DCNN)、Long Short-Term Memory (LSTM)ネットワークなどのML/DLモデルの性能を評価するために、シミュレートされた産業用B5G異種無線ネットワークを用いている。
これらのモデルは、チャネル状態情報(CSI)、位置データ、送信電力に基づいて、ユーザーを正当または悪意のあるものと分類する。
提案した数値結果によると,DCNNとRFモデルは,誤報ゼロの盗聴者の識別において,100倍の精度で接近する。
一般的に、この研究は、進化するセキュリティ脅威に対処するために、次世代無線ネットワークにAIと物理層セキュリティ(PLS)を組み合わせる大きな可能性を浮き彫りにしている。
関連論文リスト
- Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks [39.08784216413478]
本稿では,物理層認証とクロス層侵入検知システムを対象とした自動セキュリティフレームワークを提案する。
提案フレームワークはドリフト適応型オンライン学習技術と,動的ネットワーク環境向けに最適化されたMLモデルを自動的に生成する改良された逐次Halving(SH)ベースのAutomated ML(AutoML)手法を用いる。
論文 参考訳(メタデータ) (2025-02-28T01:16:11Z) - 5G NR PRACH Detection with Convolutional Neural Networks (CNN): Overcoming Cell Interference Challenges [0.0]
畳み込みニューラルネットワーク(CNN)を用いた5Gニューラジオ(5G-NR)ネットワークにおける干渉検出の新しい手法を提案する。
我々のCNNベースのモデルは、様々な干渉シナリオの中で物理ランダムアクセスチャンネル(PRACH)のシーケンスを検出するように設計されている。
実験の結果,従来のPRACH検出手法よりも精度,精度,リコール,F1スコアが優れていた。
論文 参考訳(メタデータ) (2024-08-21T14:33:43Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for CAVs [10.215216950059874]
妨害攻撃は5Gネットワークに重大なリスクをもたらす。
本研究は, CAVネットワークにおけるジャマー検出のための, 深層学習に基づく新しい手法を提案する。
提案手法は, 余剰低妨害電力の96.4%検出率を実現する。
論文 参考訳(メタデータ) (2024-03-05T04:29:31Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
効果的な分散機械学習フレームワークとして、フェデレートラーニング(FL)が登場します。
本稿では,ネットワーク設計と資源オーケストレーションの両面から,スケーラブルな無線FLを実現する上での課題と解決策について論じる。
論文 参考訳(メタデータ) (2023-10-08T08:55:03Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
エッジ人工知能(AI)は、従来のクラウドをネットワークエッジまで高速に計算するために提案されている。
近年,特定のエッジAIタスクに対する無線センシング,計算,通信(SC$2$)の収束が,パラダイムシフトを引き起こしている。
超信頼性で低レイテンシなエッジインテリジェンス獲得を実現するために、完全に統合されたセンシング、計算、通信(I SCC)を進めることが最重要である。
論文 参考訳(メタデータ) (2023-06-11T06:40:51Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
本稿では,流通戦略の再考を通じて協調的深層推論の安全性を目標とするアプローチを提案する。
我々は、この手法を最適化として定式化し、コ推論のレイテンシとプライバシーレベルのデータのトレードオフを確立する。
論文 参考訳(メタデータ) (2022-08-27T14:50:00Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
我々は、アンサンブル学習として知られる重要な機械学習の概念を適用して、インテリジェントで効率的で、かつ、高機能な侵入検知システムを開発する。
本稿では,感覚データ解析における同種・異種のオンラインアンサンブルの応用について検討する。
提案されたオンラインアンサンブルのうち、アダプティブ・ランダム・フォレスト(ARF)とHoeffding Adaptive Tree(HAT)アルゴリズムを組み合わせた異種アンサンブルと、10モデルからなる同種アンサンブルHATは、それぞれ96.84%と97.2%という高い検出率を達成した。
論文 参考訳(メタデータ) (2022-04-28T23:10:47Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
本稿では,SDS(Software Defined Security)を,自動化,柔軟性,スケーラブルなネットワーク防御システムとして提案する。
SDSは機械学習の現在の進歩を活用して、NAS(Neural Architecture Search)を使用してCNN(Convolutional Neural Network)を設計し、異常なネットワークトラフィックを検出する。
論文 参考訳(メタデータ) (2020-03-07T00:17:08Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。