論文の概要: Multi-Agent Collaborative Intrusion Detection for Low-Altitude Economy IoT: An LLM-Enhanced Agentic AI Framework
- arxiv url: http://arxiv.org/abs/2601.17817v1
- Date: Sun, 25 Jan 2026 12:47:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:08.413306
- Title: Multi-Agent Collaborative Intrusion Detection for Low-Altitude Economy IoT: An LLM-Enhanced Agentic AI Framework
- Title(参考訳): 低高度経済IoTのためのマルチエージェント協調侵入検出:LLM強化エージェントAIフレームワーク
- Authors: Hongjuan Li, Hui Kang, Jiahui Li, Geng Sun, Ruichen Zhang, Jiacheng Wang, Dusit Niyato, Wei Ni, Abbas Jamalipour,
- Abstract要約: 低高度経済の急速な拡大により、インターネット・オブ・モノ(LAE-IoT)ネットワークは前例のないセキュリティ上の課題を生んだ。
従来の侵入検知システムは、空中IoT環境のユニークな特徴に対処できない。
LAE-IoTネットワークにおける侵入検出を強化するための大規模言語モデル(LLM)対応エージェントAIフレームワークを提案する。
- 参考スコア(独自算出の注目度): 60.72591149679355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of low-altitude economy Internet of Things (LAE-IoT) networks has created unprecedented security challenges due to dynamic three-dimensional mobility patterns, distributed autonomous operations, and severe resource constraints. Traditional intrusion detection systems designed for static ground-based networks prove inadequate for tackling the unique characteristics of aerial IoT environments, including frequent topology changes, real-time detection requirements, and energy limitations. In this article, we analyze the intrusion detection requirements for LAE-IoT networks, complemented by a comprehensive review of evaluation metrics that cover detection effectiveness, response time, and resource consumption. Then, we investigate transformative potential of agentic artificial intelligence (AI) paradigms and introduce a large language model (LLM)-enabled agentic AI framework for enhancing intrusion detection in LAE-IoT networks. This leads to our proposal of a novel multi-agent collaborative intrusion detection framework that leverages specialized LLM-enhanced agents for intelligent data processing and adaptive classification. Through experimental validation, our framework demonstrates superior performance of over 90\% classification accuracy across multiple benchmark datasets. These results highlight the transformative potential of combining agentic AI principles with LLMs for next-generation LAE-IoT security systems.
- Abstract(参考訳): 低高度経済におけるインターネット・オブ・モノ(LAE-IoT)ネットワークの急速な拡大は、動的3次元モビリティパターン、分散自律操作、厳しいリソース制約による前例のないセキュリティ上の課題を生み出している。
静的な地上ネットワーク用に設計された従来の侵入検知システムは、頻繁なトポロジの変化、リアルタイム検出要求、エネルギー制限を含む、空中IoT環境のユニークな特徴に対処するには不十分である。
本稿では, LAE-IoTネットワークの侵入検知要求を分析し, 検出効率, 応答時間, 資源消費を網羅した評価指標を総合的に検討する。
次に,エージェント人工知能(AI)パラダイムの変容の可能性について検討し,LAE-IoTネットワークにおける侵入検出を強化するための大規模言語モデル(LLM)対応エージェントAIフレームワークを提案する。
これにより、知的データ処理と適応分類に特殊なLCM強化エージェントを活用する、新しいマルチエージェント協調侵入検出フレームワークが提案される。
実験により,本フレームワークは,複数のベンチマークデータセットに対して,90%以上の分類精度の優れた性能を示す。
これらの結果は,次世代のLAE-IoTセキュリティシステムにおいて,エージェントAI原則とLLMを組み合わせることの変革的可能性を強調している。
関連論文リスト
- Attention Augmented GNN RNN-Attention Models for Advanced Cybersecurity Intrusion Detection [0.4369550829556577]
本稿では,グラフニューラルネットワーク(GNN),リカレントニューラルネットワーク(RNN),マルチヘッドアテンション機構を相乗的に組み合わせたハイブリッドディープラーニングアーキテクチャを提案する。
提案手法は,グラフ構造関係とネットワークイベントの逐次解析により,空間的依存関係を効果的に捉える。
統合されたアテンションメカニズムは、モデル解釈可能性の改善と機能選択の強化という2つの利点を提供し、サイバーセキュリティアナリストは、高インパクトなセキュリティイベントに計算リソースを集中させることができる。
論文 参考訳(メタデータ) (2025-10-29T03:47:02Z) - A Quantum Genetic Algorithm-Enhanced Self-Supervised Intrusion Detection System for Wireless Sensor Networks in the Internet of Things [1.049126606580198]
本稿では、量子遺伝的アルゴリズム(QGA)と自己監視学習(SSL)を統合した新しいハイブリッド侵入検知システムを提案する。
提案するフレームワークは、IoT侵入データセットのベンチマークに基づいて評価され、検出精度、偽陽性率、計算効率の点で優れた性能を示す。
論文 参考訳(メタデータ) (2025-09-03T22:02:39Z) - Agentic Satellite-Augmented Low-Altitude Economy and Terrestrial Networks: A Survey on Generative Approaches [76.12691010182802]
本調査は,衛星搭載低高度経済と地上ネットワーク(SLAETN)におけるエージェント人工知能(AI)の実現に焦点をあてる。
SLAETNのアーキテクチャと特徴を紹介するとともに,衛星,空中,地上コンポーネントの統合において生じる課題を分析する。
これらのモデルが,コミュニケーション強化,セキュリティとプライバシ保護,インテリジェントな衛星タスクという,3つの領域にわたるエージェント機能をどのように強化するかを検討する。
論文 参考訳(メタデータ) (2025-07-19T14:07:05Z) - Internet of Agents: Fundamentals, Applications, and Challenges [68.9543153075464]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - FLARE: Feature-based Lightweight Aggregation for Robust Evaluation of IoT Intrusion Detection [0.0]
モノのインターネット(IoT)デバイスは攻撃面を拡張し、ネットワーク保護のために効率的な侵入検知システム(IDS)を必要とする。
本稿では、IoT侵入検出の堅牢な評価のための機能ベースの軽量アグリゲーションであるFLAREを提案する。
我々は、IoT IDSの攻撃を分類するために、4つの教師付き学習モデルと2つのディープラーニングモデルを使用します。
論文 参考訳(メタデータ) (2025-04-21T18:33:53Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
本稿では,機械学習(ML),説明可能なAI(XAI),大規模言語モデル(LLM)を活用した,リアルタイムIoT攻撃検出および応答のための革新的なフレームワークを提案する。
私たちのエンドツーエンドフレームワークは、モデル開発からデプロイメントへのシームレスな移行を促進するだけでなく、既存の研究でしばしば欠落している現実世界のアプリケーション機能も表しています。
論文 参考訳(メタデータ) (2024-09-20T03:09:23Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
従来の機械学習ベースの侵入検知システム(ML-IDS)にはラベル付きデータの要求のような制限がある。
AutoEncodersやGenerative Adversarial Networks (GAN)のような最近の教師なしML-IDSアプローチは代替ソリューションを提供する。
本稿では,分散データセットの共通表現を学習するフェデレーション型非教師付き異常検出フレームワークであるFedPCAを提案する。
論文 参考訳(メタデータ) (2024-07-10T07:23:21Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。